- Российский автомобильный рынок перешагнул двухмиллионную отметку. Теперь Россия по объему продаж новых машин опережает Испанию, занимая пятое место в Европе после Германии, Великобритании, Италии и Франции. По оценке консалтинговой компании PriceWaterhouseCoopers, емкость рынка в денежном выражении за год выросла на 45% и достигла $32 млрд — то есть в среднем цена купленного в России автомобиля составила $15533.
- Абсолютный лидер — по-прежнему АвтоВАЗ с его более чем 700-тысячной производственной программой. Но с учетом растущего рынка доля тольяттинского автогиганта неуклонно снижается — с 49% в 2005 году до нынешних 37,5%. Всего доля «исконно российских» производителей — это АвтоВАЗ, ГАЗ, УАЗ и Серпуховский завод, где делают Оку, — снизилась и в абсолютном выражении куплено на 13,9% меньше «нашемарок», чем в 2005 году.
- Даже подержанные иномарки сдают рыночные позиции — ввезено около 260 тысяч машин, на 4,3% меньше, чем в прошлом году, но с учетом роста рынка их доля снизилась до 13%.
- Россию завоевывают новые иномарки. Их продажи возросли на 65,5% — до 1003,8 тысячи машин, из которых 255,6 тысячи собраны в России (это на 74,8% больше, чем в прошлом году).
Лидеры иномарочного рынка — Ford, Chevrolet, Toyota и Hyundai, объем продаж которых колеблется около 100-тысячной отметки. Далее идет плотная группа «хорошистов» — марки Nissan, Renault, Mitsubishi, Kia и Daewoo продали более 60 тысяч машин каждая. Если оценивать объем продаж по концернам и альянсам, то Ford тоже в лидерах — вкупе со своими марками Mazda, Volvo, Land Rover и Jaguar он занимает 16,2% рынка новых иномарок. На втором месте корейский концерн Hyundai-Kia (15,2%).
Следом идет альянс Renault-Nissan (14,7%).
И только потом — General Motors (13,2%) c его пестрой компанией корейских и российских (Niva) машин и Toyota (10,5%).
- Но эта картина далеко не окончательная. Дело в том, что продажи большинства иномарок в России ограничены — сознательно установленными автопроизводителями квотами или нехваткой производственных мощностей российских (Ford, Renault) и зарубежных (Hyundai) заводов. Поэтому делать выводы преждевременно: переходные рыночные процессы в России еще не закончены. Впереди у нас — запуск новых автосборочных заводов, агрессия «китайцев», сопротивление АвтоВАЗа, все большее влияние рынка подержанных иномарок, который становится все цивилизованнее. Поэтому важным является прогнозирование потребительского спроса на иномарки. Изучению динамики спроса и построению модели спроса посвящена данная работа.
- Приведем данные о продаже легковых автомобилей отечественного производства в России в 2005-2006гг. Данные взяты с сайта http://www.e-stat.ru/
год |
месяц |
месяц |
продажа |
|
2005 |
январь |
1 |
75505 |
|
февраль |
2 |
75608 |
||
март |
3 |
82615 |
||
апрель |
4 |
87571 |
||
май |
5 |
90814 |
||
июнь |
6 |
94539 |
||
июль |
7 |
98282 |
||
август |
8 |
101599 |
||
сентябрь |
9 |
99492 |
||
октябрь |
10 |
97094 |
||
ноябрь |
11 |
95576 |
||
декабрь |
12 |
92638 |
||
2006 |
январь |
13 |
93570 |
|
февраль |
14 |
95569 |
||
март |
15 |
100289 |
||
апрель |
16 |
101867 |
||
май |
17 |
109334 |
||
июнь |
18 |
112349 |
||
июль |
19 |
117285 |
||
август |
20 |
120948 |
||
сентябрь |
21 |
115827 |
||
октябрь |
22 |
113370 |
||
ноябрь |
23 |
113337 |
||
декабрь |
24 |
111933 |
||
- Выделим временной тренд продаж автомобилей за 24 месяца 2005-2006гг. Приведем массив данных
Дисперсионный анализ
Среднее Y
Остаточная вариация (RSS) , Общая вариация (TSS) , Объясняемая вариация (ESS) , Правило сложения дисперсий выполняется , Подсчитаем оценку дисперсии ошибки, т.е. , Среднее X , Найдем оценки дисперсий коэффициентов регрессии
по формулам
Получим
Эластичность
Подсчитаем функцию эластичности по формуле
В нашем случае
или
Значение эластичности в средней точке
Показывает, что при изменении X на 1% Y меняется на 0.201 процентов.
Изучение качества регрессии
Доверительные интервалы для оцененных параметров
уровень доверия
Количество степеней свободы 22
Критическое значение статистики Стьюдента
Доверительный интервал для beta
равен
Не можем на данном уровне значимости принять гипотезу beta=0 т.к. не попадает в доверительный интервал.
Доверительный интервал для alpha
равен
Мы не можем на данном уровне значимости принять гипотезу alpha=0 т.к. не попадает в доверительный интервал.
Критерий Фишера значимости всей регрессии
Коэффициент корреляции
где
показывает, что связь сильна
Коэффициент детерминации
показывает, что регрессия объясняет 81, 67 процентов вариации признака.
Убедимся в значимости модели с помощью статистики Фишера
которая больше критического значения
Следовательно, регрессия значима
Проверим значимость коэффициента корреляции
поэтому выборочный коэффициент корреляции значимо отличается от нуля.
Средняя ошибка аппроксимации
Колеблемость признака
Колеблемость — это отклонения уровней динамического ряда от тренда, т.е. остатки регрессии. Найдем остатки регрессии (т.е. очищаем признак от тренда)
Нарисуем график остатков
Среднее линейное отклонение уровней ряда от тренда описывается показателем
т.е. среднее абсолютное отклонение от тренда равно
Амплитуда колебаний есть разность максимального и минимального отклонения и показывает максимальный разброс отклонений.
Индексы сезонности находятся по формулам
Степень тесноты связи между последовательностями наблюдаемого временного ряда, сдвинутого относительно друг друга на t единиц может быть определена с помощью коэффициента автокорреляции
Показатель t служит порядком коэффициента автокорреляции. Для разных t получаем r(t) — автокорреляционную функцию
а ее график — коррелограмма.
Статистика Дарбина-Уотсона
Попали в зону положительной автокорреляции.
Прогноз
Точечный прогноз для
Интервальный прогноз с вероятностью 95%
или
Точечный прогноз для
Интервальный прогноз с вероятностью 95%
или
Подобные документы
-
Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008
-
Построение уравнения множественной регрессии в линейной форме с полным набором факторов, отбор информативных факторов. Проверка значимости уравнения регрессии по критерию Фишера и статистической значимости параметров регрессии по критерию Стьюдента.
лабораторная работа [217,9 K], добавлен 17.10.2009
-
Нахождение коэффициента корреляции и параметров линии регрессии по заданным показателям y и х. Оценка адекватности принятой модели по критерию Фишера. Построение графика линии регрессии и ее доверительной зоны, а также коэффициента эластичности.
контрольная работа [2,1 M], добавлен 09.07.2014
-
Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.
контрольная работа [681,9 K], добавлен 03.08.2010
-
Функциональные преобразования переменных в линейной регрессии. Формулы расчета коэффициентов эластичности. Характеристика экзогенных и эндогенных переменных. Построение одно- и двухфакторного уравнений. Прогнозирование значения результативного признака.
курсовая работа [714,1 K], добавлен 27.01.2016
-
Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [914,4 K], добавлен 01.12.2013
-
Построение корреляционного поля зависимости между y и x1, определение формы и направления связи. Построение двухфакторного уравнения регрессии y, x1, x2, оценка показателей тесноты связи. Оценка модели через F-критерий Фишера и t-критерий Стьюдента.
лабораторная работа [1,0 M], добавлен 23.01.2011