Типы экологических кризисов. Критерии выхода из экологических кризисов

Студентка 2 МТР

Леонтьева И.

Проверил:

Аюпов Н.Г.

Алматы 2000 г.

Типы экологических кризисов. Критерии выхода из экологических кризисов

В последние годы ы часто слышим и употребляем слово «экология», но вряд ли м ожно считать, что все понима ют п од ним одно и то же. О том, какой смысл следует в кладывать в это поня­ти е, спорят даже специалисты.

А пока они спорят, неспециалисты уже поняли, что такое экологический минимум: это значит — дышать чистым пить чистую воду, есть пищу без нитратов и не светиться в темноте.

Термин «экология» (от греческих — дом, место обитания, и « логос» — наука) был придума нв 1866 году немецким зоологом Эрнстом Геккелем, который ввел его в обиход для обоз на чения «общей науки об от­ношениях орга низмов к окружающей среде», куда мы относим в ш ироком смысле все «условия существования». Это понятие, перв оначально довольно узкое, в дальнейшем расширялось, какое-то время и экологи я развивалась как одна из биологических наук, изучающая не отдельные организмы, а структуру и функционирование био­логических систем — популяций, ви­дов, сообществ — и их взаимодействий друг с другом и с окружающей сре­дой. Такое или близкое определение экологии можно найти во многих со­временных энциклопедиях и справоч­никах,

Но сейчас понятие экология» уже д а леко вышло за рамки того, что вкладывалось в него Эрнстом Гекке­лем и что указывается в справочни­ках и энциклопедиях. Теперь э то уже самостоятельная наука об окружающей среде (с точки зрения ее в заимодей­стви й с живыми организ ма ми и преж­де всего с людьми).

Ее питает не толь­ко и н е стол ько биология, но и почти все науки о Земле — метеорология, гидрология, океа нология, климатоло­гия, география, геология с необходи­мыми для них физико-математически ­ми и химическими методами, а также социология, психология и экономика .

Сейч с эта наука, пожалуй, ближе не к биологии, а к географии, включ а я ее физическую и экономическую поло­вины. Думается, что для географии, казалось бы, уже исчерпавшей свои п режние творческие задачи, пере­ориентация на экологию открывает новые неограниченные перспективы.

Т кого расширения содержания эко­логии и смещения в нем акцентов по­требовал стремительный количествен­ный рост человечества, которое начало осознавать опасности, угрожающие всей планете (ядерная катастрофа, воз­можный парниковый эффект и тому по­добное), уже столкнулось в своей практике с ограниченностью при­родных ресурсов (в том числе энерге­тических) и воочию увидело губитель­ные побочные воздействия неразумно й хозяйственн ой деятельности на окру­жающую среду — экологические ка­тастрофы, как Чернобыль и Арал. 8 связи с этим современная эколо­гия ста вит во главу своих интересов взаимодействия человека с экологиче­скими системами, всей окружающей средой.

23 стр., 11459 слов

Экология и экономика

... взаимодействиям производства с окружающей его природной средой. Поэтому предметом исследования в инженерной экологии является взаимодействие технологических и ... экономика + экология) – обозначение совокупности явлений, включающих общество как социально-экономическое целое (но прежде всего экономику и технологию) и ... Объединенных Наций по вопросам образования, науки и культуры), в состав которой входит ...

Упомянув количественны рост че­ловечества, мы, однако, надеемся, что имеющемуся сейчас и даже не­ с колько большему количеству людей на Земле можно обеспечить экологи­ческий минимум. Но единственный путь к этому видится в том, чтобы решительно порвать с экстенсивной экономикой и перей ти к интенсивной.

Экстенсивная экономика — это во-первых, добыча и использование к а к можно большего количества при­родных ресурсов (включая энергию) и, во- вторых, попытки произвести как можно больше продуктов промышлен­ности и сельского хозяйства. И то и другое природоразрушительно. Такая экономика ненаучна. Она бесперспек­тивна.

Интенсивная экономика — это про­изводство необходимого количества потребительских продуктов и товаров при как можно меньших затратах энергии и других ресурсов (и строгом соблюдении природоохранных норм очистки всех сбросов и утилизации от­ходов до переход на замкнутые цик­лы, например, воздухо- и водопользо­вания).

Возможность такой экономики доказана многочисленными примера­ми энерго- и ресурсосберегающих безотходных технологий, используе­мых в развитых стра нах.

Хотя в последние го ы м ы начали осознавать единство и конечность био­сферы и всей окружающей среды, от­ветственность человечества за свою собственную судьбу, судьбу биосфе­ры, судьбу всей планеты, мы еще очень д алеки от того состояния, которое В. И. Вернадский обозначил термином «ноосфера» (от греческого «ноос» — разум).

Последнее подразумевает пре­вращение человека из чужеродного элемента в природе в ее неотъемле­мую, органично вписывающуюся в нее часть. Это будет достигнуто только тогда, когда новое мышление, в ко­тором экологические проблемы долж­ны иметь высший приоритет, станет внутренней потребностью всего чело­вечества, от лиц, облеченных властью и распоряжающихся ресурсами, до в сех граждан мира. Пока же в допол­нение к естественно возрастающим экологическим проблемам люди про­должают создавать все новые труд­ности, которые неизбежно придется преодолевать, затрачивая большие уси­лия и средства.

Представляется, что все экологиче­ские проблемы можно отнести прежде всего к двум связанным друг с другом главным ф кторам: изменениям климата и загрязнению окружающей среды. Этим двум факторам и посвя­щена настоящая работа.

Хотя изменения климата, естест ен­ные или вызванные деятельностью че­ловека (так называемые антропогенные) , происходят сравнительно мед­ленно, они охватывают огромные ре­гионы и потому могут представлять серьезную проблему для человечества. При значительных изменениях климата произойдут смещения климатических зон, в результате чего л юдям при­дется целиком или частично перестра­ ивать в этих зонах свою хозяйственную деятельность. Загрязнение окружаю­щей среды также принимает глобаль­ный характер, так как фактически оно не знает национальных границ. Нарас­тание загрязнения превращается в опасность для самого существования биосферы, и в том числе всего чело­вечества.

15 стр., 7138 слов

Экономические и социальные проблемы охраны окружающей среды

... человеком предметной среды, взаимодействующей с окружающей природной средой. Именно существование "второй природы" в подавляющем большинстве случаев порождает экологические проблемы, возникающие на стыке экологических и социальных систем. Эти, социоэкологические в своей сущности проблемы и ...

1. Почему загрязнение нарастает?

Загря нение окружающей среды — это поступление в нее вредных веществ (иногда говорят и о тепло­вом загрязнении), могущих нанести ущерб здоро в ью человека, неорга­нической природе, растительному и животному миру или стать помехой в той или иной человеческой деятельности. Конечно, загряз не­ния, выз ванные деятельностью людей (их называют антропогенными), надо отличать от естественных загрязнений. Обычно, говоря о загрязнении, имеют в виду именно антропогенное загрязнение и оце­нивают его, сравнивая мощности естественных и антропогенных источников загрязнения.

Загрязнение окружающей среды имеет почти такую же дол­гую историю, что и история самого человечества Долгое время перво­бытный человек мало чем отли­чался от других видов животных и в экологическом смысле находился в равновесии с окружающей средой. К тому же численность человече­ства была невелика. По оценкам исследователей, 100 тысяч лет назад на Земле было всего около миллиона человек. С течением времени в результате развития биологической организации людей, их умственных способностей, чело­веческий род выделился среди других видов. По словам француз­ского эколога Ф. Рамада, «возник первый вид живых существ, воз ­действие которых на все живое представляет собой потенциаль­ную угрозу равновесию в природе».

Хорошим показателем роста вме­шательства человека в природные процессы, в естественный кругово­рот веществ может служить рост количества энергии, потребляемой человеком. За единицу количества энергии можно принять килокало­рию: это приблизительно количе­ство тепла, необходимое для на­гревания килограмма воды на один градус Цельсия. На заре своего развития человек потреблял в виде пищи 2—4 тысячи килокало­рий в сутки. После первых техни­ческих революций (овладение огнем, переход к оседлому образу жизни и сельскохозяйственному прои водству, приручение некото­рых видов животных) добавилось примерно столько же используемой человеком тепловой и механичес­кой энергии. Считается, что 10 тысяч лет назад (в новом каменном веке) исполь з овалось около 10 тысяч килокалорий на человека в сутки. В феодальном обществе, основанном на сельскохозяйствен­ном производстве, эта величина выросла до 22—26 тысяч килока­лорий в сутки — это еще не нару­шало равновесия человека с при­родой, поскольку производство той поры неплохо вписывалось в при­родный круговорот веществ. Но дальше пошло хуже, и положение существенно изменилось с началом промышленной революции XVII— XVIII веков, когда производство и потребление энергии на каждого человека выросло до 70 тысяч килокалорий в сутки.

А сейчас в промышленно разви­тых странах (например, в США) потребляется уже до 200—250 тысяч килокалорий в сутки на каждого человека. По данным Мирового банка в про­мышленно развитых странах с рыночной и плановой экономикой за счет топлив­ных з апасов (природный газ, нефть, уголь, ядерная энергия) было произ ведено и потреблено 139 тысяч килокалорий в сутки на душу населения. Правда, в других стра­нах произ водится гораз до меньше энергии, и средняя цифра впятеро ниже — около 43,5 тысячи килока­лорий в сутки на душу населения, то есть в 10—20 раз больше, чем потребляли первобытные люди. И по всем прогнозам произ водство и потребление энергии на каждого человека будут продолжать расти.

7 стр., 3007 слов

Обмен энергии. Состав пищи и суточный расход энергии

... поступления и расхода энергии. Живые организмы получают энергию в виде потенциальной энергии питательных веществ. Эта энергия аккумулирована в ... около 10 суток, белков мышц около 180 суток. В среднем белки организма человека обновляются за 80 суток. Липиды. Липиды организма человека ... поступлении водорастворимых витаминов в дозах, превышающих суточную потребность, эти вещества могут быстро выводиться ...

Численность человечества.

Если учесть оба эти фактора — потребление энергии на душу насе­ления и численность человечества, то окажется, что используемая человечеством энергия сейчас пре­вышает энергию, которую исполь­зовало человечество в первобыт ную эпоху, в 5000 раз. Мощность источников используемой в насто­ящее время энергии составляет около 1,2 десятка миллиардов киловатт против 0,24 миллиона в новом каменном веке. Можно счи­тать, что вмешательство человека в природные процессы за это время выросло не менее чем в 5000 раз, если это вмешательство вообще можно оценить.

Дело не только в том, что способ­ность окружающей среды к само­очищению находится на пределе из-за больших количеств поступа­ющих в среду отходов человечес­кой деятельности. Значительная часть этих отходов чужда природ­ной среде. Они либо ядовиты для микрооргани мов, разрушающих сложные органические вещества и превращающих их в простые неор­ганические соединения, либо вообще не разрушаются и поэтому накапливаются в различных частях окружающей среды. Даже те веще­ства, которые привычны для окру­жающей среды, поступая в нее в слишком больших количествах, могут изменять ее качества и воз­действовать на экологические системы.

2. Загрязнение атмосферы.

Наиболее распространенные агрязнители атмосферы посту­пают в нее в основном в двух видах: либо в виде взвешенных частиц (аэрозолей), либо в виде газов. По массе львиную долю — 80—90 процентов — всех выбросов в атмосферу из-за деятельности человека составляют газообраз­ные выбросы. Среди них главное место з анимают химические соеди­нения углерода, серы и азота.

Углекислый газ., Угарный газ.

Выше говорилось, что очень малые концентрации составля­ющих смесей принято выражать через миллионные или миллиард­ные доли некоторого объема (реже — в долях массы) и обо начать чнм или чнб, что означает одну часть на миллион или на биллион (мил­лиард).

Так вот, при концентрации угарного газа в 100 чнм возникает ощущение вялости, головная боль, головокружение, а концентрация в 1000 чнм (или 0.1 процента) быстро приводит к смерти человека. В естественных условиях концентра­ция этого газа в воз духе состав­ляет 0,1—0,2 чнм (в Северном полушарии 0,2, в Южном — 0,06 чнм).

В городах эта концентрация колеблется от 1 до 140 чнм (в сред­нем 20 чнм), в крупных городах на оживленных перекрестках в часы пик она нередко может превышать 100 чнм, а в лондонских транспорт­ных туннелях отмечались концент­рации до 295 чнм.

В настоящее время в результате деятельности человека в атмос­феру поступает около 300 миллио­нов тонн угарного газа в год (в 1968 году в атмосферу его было 257 миллионов тонн).

Причем 70—75 процентов выбросов соз­дается сжиганием бензина в двига ­ телях внутреннего сгорания, около 10 процентов сжиганием угля и дров, примерно столько же сжига­нием бытовых отходов и около 5 процентов лесными пожарами. Некоторая часть угарного газа соз­дается технологическими потерями в промышленности (например, металлургической, нефтеперера­батывающей, химической).

9 стр., 4152 слов

Формирование цен на газ

... составить около 20 %. 4. До внутреннего рынка добрались рыночные принципы До совсем недавнего времени вопрос о цене на газ для ... Совет директоров газового монополиста одобрил переход системы ценообразования для российского потребителя на формулу расчета цены, аналогичную для европейских ... Из чего же складывается для них цена тысячи кубометров российского газа и почему в разных странах она отличается ...

Немалое количество угарного газа поступает в атмосферу и из естественных источников. Точно определить это количество трудно, так что имеющиеся оценки суще­ственно расходятся (от 90 до 30 процентов).

Основные естествен­ные источники — это прежде всего вулканы, а также разложение орга нического вещества в придонных илах стоячих водоемов, электри­ческие разряды в атмосфере, био­логические процессы в океане, естественные лесные пожары и, наконец, окисление так называе­мых терпенов — выделяемых рас­тительностью (главным образом вечнозеленой тропической) лету­чих органических продуктов ее жизнедеятельности.

Болотный газ.

В последнее время роль различ­ных источников метана измени­лась. В 1940 х годах на первом м есте стояли болота и заболочен­н ые ме стности, а в 1980-х годах этот источник ослабел, и переме­стился на четвертое место, уступив место з атопля емым полям для воз­делывания риса (« чекам»), живот­новодству и сжиганию биомассы налицо влияние деятельности человека.

Терпены, непрерывно выделя емые в атмосферу деревьями и другими растениями, поступают в атмосферу прибл из ительно в таком же количестве, что и метан, то е сть около 400 миллионов тонн в год (хотя некоторые оценки дости­гают 1000 миллионов тонн).

Эти веще ства очень активны, особенно в присутствии оз она. Считается, что именно они соз дают атмосфер­ную дымку, часто наблюдаемую на суше в далеке от промышленных источников загрязнения. Многие читатели наверняка наблюдали голубоватую дымку и ощущали запах озона в утреннем, освещен­ном солнцем сосновом бору.

Углеводоро ы,

Такие опасные для человека и животных вещества образуются при сжигании угля, нефти, быто­вого мусора и даже при изготовле­нии на открытом огне шашлыков и при курении. Немало углеводоро­дов поступает в атмосферу от химических заводов, при испарении различных растворителей в быту, изготовлении и использовании красок, при разливах бензина на бен з околонках. При определенных условиях высокая концентрация углеводородов может привести к образованию так называемого фотохимического смога с ядовитыми веществами, вызывающими раздражение и заболе вания дыхательных путей и глаз у людей и губящими расти­тельность.

Сернистый газ.

Промышленные источники серни­стого га а по интенсивности давно прев з ошли вулканы и сейчас срав­нялись с суммарной интенсивно­стью всех естественных источни­ков. В природе нет ископаемого топлива, которое состояло бы из одних углеводородов. Всегда име­ется примесь других элементов, и один из них — сера. Даже природ­ный газ содержит по крайней мере следы серы. В сырой нефти, в зави­симости от месторождения, содер­жится от 0,1 до 5,5 процента серы, а уголь содержит от 0,2 до 7 про­центов серы. Поэ тому сжигание топлива дает 80—90 процентов всего антропогенного сернистого газа, причем больше всего (70 про­центов и более) дает сжигание угля. Остальные 10—20 процентов приходятся на выплавку цветных металлов и произ водство серной кислоты. Сырьем для получения меди, свинца и цинка служат глав­н ым образ ом руды, содержащие большое количество серы (до 45 процентов).

Те же самые руды и другие богатые серой минералы служат сырьем для получения сер­ной кислоты.

Сернистый газ очень ядовит, он представляет угрозу здоровью и даже жизни человека и животных, наносит ущерб растительности. В СССР для сернистого га а в атмос­фере предельно допустимые кон­центрации (ПДК) для разового воз ­действия — 0,5 миллиграмма на кубометр, средняя за сутки — 0,05, что в перерасчете на объемные концентрации дает 0,17 и 0,017 чнм, соответственно,

3 стр., 1467 слов

Измеритель расхода газа бытовой

... трехфазных счетчиков, требования к установке. реферат [1,6 M], добавлен 08.06.2011 Компонентный состав газа и его характеристики. Определение расчетного часового расхода газа по номинальным расходам газовыми приборами и горелочными устройствами. Гидравлический ...

Обычная концентрация серни­стого газа в нижней части атмос­феры равна 0,2 Однако его распределение по земному шару очень неравномерно. По измере­ниям на станциях наблюдения з а фоном (мониторинга), расположен­ных в различных районах мира и находящихся в удалении от не­посредственных антропогенных источников этого газа, концентра­ции раз личаются в десятки и сотни раз . Наибольшие концентрации наблюдаются в Северном полуша­рии, причем максимальных значе­ний они достигают в восточных и центральных районах США, в Цент­ральной Европе (10—14 микрограммов на кубометр, или 3 ,4—4,8 чнб).

В районах, где крупных городов и промышленных центров меньше (з апад США, Европейская террито­рия СССР и др.), концентрация сер­нистого газа на порядок меньше (1—4 микрограмма на кубометр, или 0,34—1,37 чнб), а в некоторых более чистых районах, как Кавказ и озеро Байкал, меньше 0,1 микро­грамма на кубометр, или 0,03 4 чнб. В Южном полушарии концентрация сернистого газа в 1,5—2 раз а ниже, чем в Северном, над океаном суще­ственно ниже, чем над контине­нтом, причем над океаном концент­рация увеличивается с высотой, тогда как над континентами она уменьшается,

При концентрации 8—12 чнм сер­нистый газ сильно ра дражает дыхательные пути и вызывает кашель, при 20 чнм он ра з дражает глаз а. В присутствии других загряз­нителей, например при наличии аэрозольных частиц, для такого же воз действия достаточно гораздо более низ ких концентраций серни­стого газ а. Это объясняется тем, что совместный эффект двух загрязнителей превосходит сумму воздействий каждого из загряз ни­телей, действующих порознь. Именно это произ ошло во время печально з наменитого сернистого смога 5—9 декабря 1952 года в Лондоне, когда погибли 4 тысячи человек и были зарегистрированы десятки тысяч з аболеваний легких и верхних дыхательных путей. Рост ежедневной смертности стал заме­тен, когда содержание сернистого газ а достигло 0,20 чнм, а содержа­ние аэроз ольных частиц составило 750 микрограммов на кубометр. В дальнейшем эти показатели, а также и смертность продолжали расти, причем смертность увеличи­лась на 20 процентов, когда содер­жание сернистого газ а достигло 0,52 чнм, а аэрозолей — 2000 микрограммов на кубометр.

Лондон был, по-видимому, пер­вым и крупных городов мира, кото­рые столкнулись с проблемой загрязнения атмосферы с е рнистым газом. Из вестно, что еще в сере­дине XIII века стали раздаваться протесты против использ ования угля для отопления, но несмотря на королевский запрет, изданный Эдуардом 1 в 1276 году, его потреб­ление в каминах для отопления домов продолжало расти. К этому вскоре прибавилось использ ование угля в промышленности, и уже в XVIII веке содержание сернистого газа в воз духе над Лондоном часто в несколько раз превосходило сов­ременную предельно допустимую концентрацию. Сохранились свиде­тельства современников о том, что путники, приближавшиеся к Лондону, уже за несколько миль до города чувствовали резкий запах сернистого газ а.

Лондонская трагедия 1952 года и аналогичные случаи в других крупных городах (Нью — Йорк, Роттердам и многие другие) сыграли свою роль и во многих промышленно развитых странах побуди ли принять реши­тельные меры по сокращ ению выбросов сернистого газ а (да и дру­гих з агрязнителей).

3 стр., 1363 слов

Ресурсы нефти и газа и их современное значение в мировой экономике

... и экономический аспект. Целью настоящей курсовой работы является изучение современного значения в мировой экономике ресурсов нефти и газа. Для достижения поставленной цели, в процессе работы необходимо будет решить следующие задачи: ... когда выявилось её значение в качестве топлива и сырья для химической промышленности. В настоящее время около 90% нефти перерабатывается в нефтепродукты, а чуть менее ...

По-видимому, э то отраз илось и на статистике гло­бальных антропогенных выбросов сернистого газ а в атмосферу. После быстрого роста выбросов в 1950-х годах (ежегодный рост составлял 4,6 процента по сравне­нию с 1,2 процента в предыдущее десятилетие, включавшее годы второй мировой войны).

Последовало уменьшение темпов роста вдвое (до 2,3 процента в год) в 1960-х годах и дальнейшее умень­шение (до 2 процентов) в 1970— 1980 годах (но это все еще был рост!).

Принятые меры не замедлили ска аться. После издания закона об охране воздуха Большого Лондо­на, замены традиционных угольных каминов бутафорскими (пред­ставьте себе, что означал для анг­личан отказ от традиции !), введе­ния парового отопле ния и расшире­ния использ ования электричества смоги, да и обычные туманы в анг­лийской столице стали гораздо более редкими гостями . Их воз­ действие теперь никак нельзя сравнивать с убийственным воз­действием смогов 1950—1960-х годов.

В СССР в 1950—1960-х годах проблема агряз н ения атмосферы сернистым газом стояла не так остро, как а промышленно разви­тых капиталистических странах. Однако и в нашей стране в те годы можно было з аметить тенденцию к ухудшению обстановки. В з астой­ ный период в отсутствии широкой гласности возобладал ведомствен­ный диктат, результатом которого стало раз витие ради раз вития и полнейшее игнорирование провоз ­глашаемых гуманистических прин­ципов, таки х, например, как «все на благо человека». Сейчас, с прихо­дом гласности, вдруг стало ясно, что у нас не только неблагополучно с экологической обстановкой, но, по мнению многих авторитетных экологов, мы находимся на пороге национальной экологической ката­ строфы. На Съез де народных депу­татов СССР впервые было сказано о наличии в нашей стране неблаго­получных с точки зрения экологии городов. В 1988 году в их список вошли 104 города из 23 6 городов с населением св ыше 100 тысяч чело­век. В этих городах в течение года хотя бы один раз содержание того или иного из з агрязнителей было превышено десятикратно, более сложный индекс з агрязнения, учи­тывающий не только содержание загряз нителей, но и их динамику, поз воляет выделить 68 особенно неблагополучных городов с сум­марным населением в 43 миллиона человек. В этих городах (например, в Нижнем Тагиле) так дальше жить уже невоз можно.

В СССР выбрасывается в во дух ежегодно около 2 3 миллионов тонн сернистого газ а, что составляет приблизительно де сятую долю от глобального выброса этого газа и около четверти от в сех выбросов вредных веществ в атмосферу в нашей стране.

Для растений сернистый газ ядо­вит при содержании 2—3 чнм (или 6—9 миллиграммо на кубометр), но хронические повреждения наступают уже при 0.03 чнм (0,09 миллиграмма на кубометр).

При больших кон ц ентрациях сернистого газа происходит быстрое отми ра­ние листьев и гибель всего расте­н ия. Хронические повреждения при длительном воздействии малых концентраци й серни стого газа выражаются в накоплени и вредн ых веществ в тканях растения , разру­шении хлорофилла, снижении интенсив ности фотосинтез а, нару­шении роста, снижении урожая. Сернистый газ нарушает водный обмен у растений, в ызыв ает опадание листьев, усыхание молодых побегов. Особенно чувствительны окисляется до серного ангидрида, кото рый жадно соединяется с водой или слабыми водными рас­твора ми облачных или дождевых капель и образ ует сульфатные аэроз ольные частицы. Их время пребывания в нижней атмосфере несколько больше, чем у серни­стого газ а.

43 стр., 21194 слов

Активно обсуждается в публикациях ряда периодических изданий ...

... (например, в журнале «Эксперт»), справедливо отмечается в средствах массовой информации и слабое использование в прогнозировании экономико-математических моделей. Исходя из анализа проблем прогнозирования развития экономики ... ликвидацию угрозы. В современной прогностике можно выделить четыре вида прогнозов: 1) Поисковый, который выявляет перспективные проблемы путем условного продолжения в будущее ...

Аммиак и окислы азота.

Главные а отсодержащие з агряз нители атмосферы — окись и перекись азота. Оба газа ядовиты. Окись аз ота поступает в атмос­феру в рез ультате жизнедеятель­ности микроорганиз мов и горения. Естественные источники дают около 450 миллионов тонн в год, антропогенные — вдесятеро мень­ше. Основным антропогенным источником является высокотем­пературное сжигание ископаемого топлива, прежде всего в двигате­лях внутреннего сгорания и дизе­лях. В атмосфере окись азота дов ольно быстро окисляется в дву­окись, которая также образуется при горении. Некоторая доля дву­окиси образуется при вулканичес­кой деятельности и электрических разрядах в верхних слоях атмосфе­ ры.

Средняя концентрация окиси азота достигает 2 (3 микро­грамма на кубометр), двуокиси азота — 4 чнб (6 микрограммов на кубометр).

В крупных промышлен­ных центрах их концентрация уве­личивается в 10—100 ра з . Так, например, в пяти крупных городах США, расположенных в промыш­ ленном поясе северо-востока и Среднего З апада, средняя годовая концентрация двуокиси аз ота составляла 30—50 чнб (60—100 микрограммов на кубометр), а среднегодовое значение максиму­мов — 140— 260 чнб (290— 530 микрограммов на кубометр.

Окислы азота в атмосфере при­водят к обра ованию коричнева­того смога, чему, как правило, спо­собствует присутствие Других з агрязнителей — сернистого газа, углеводородов, а также местные метеорологические и топографи­ческие условия. Такие смоги нано­сят ущерб здоровью людей, в част­ности выз ывают раз дражение глаз и губят городскую растительность.

Окислы азота в облаках и тума­нах соединяются с водой, образуя капельки разбавленной а отной кислоты или ее солей. Часть и з них превращается в твердые аэроз оль­ные частицы, которые осаждаются на поверхности почвы и в оды, дру­гая вымывается из атмосферы дождями, так что кислые дожди бывают как сернокислыми, так и азотнокислыми.

Почти 90 процентов окислов азо­та, попадающих в атмосферу в ре ультате деятельности челове­ка, образуется в результате сгора­ния топлива в автомобильных дви­гателях (более 50 процентов) и л и в топках теплоцентралей и тепловых электростанций. Большой вклад вносит также сжигание твердых отходов — бытовых, промышлен­ных и сельскохозяйственных, лес­ные пожары. Источником окислов азота служат также ряд отраслей промышленности, в их числе произ­водство азотной кислоты, мине­ральных удобрений, искусственных волокон и т. д.

Аэро оли.

Процессы образования аэро о­лей весьма разнообра з ны. Это пре­жде всего раздробление, раз мель­чение и распыление твердых веществ. В природе такое происхо­ждение имеет минеральная пыль, поднимаемая с поверхности пустынь во время пыльных бурь. В северной части тропической Атлан­тики, куда выносится сахарская пыль пассатными ветрами, атмос­фера бывает настолько замутнен­ной, что солнце при восходе или з акате оказывается невидимым довольно высоко над горизонтом. Этот источник атмосферных аэро­золей имеет глобальное з начение, так как пустыни занимают около трети поверхности суши, да еще им еется тенденция к увеличению их доли из-за неразумной деятель­ности человека. Минеральная пыль с поверхности пустынь переносится ветром на многие тысячи киломе­тров. Так, например, отмечалось выпадение больших количеств сахарской пыли в Англии, а также и на противоположной стороне Атлантического океана — на острове Барбадос.

10 стр., 4819 слов

Способы ликвидации последствий заражения токсичными и радиоактивными веществами

... дезактивации, степени загрязнения и времени используется тот или другой способы дезактивации. Один из наиболее доступных способов дезактивации - это смывание радиоактивных веществ струей воды под давлением. ... тканей. Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и ...

Аналогично проявляется вулка­нический пепел, попадающий в атмосферу во время из ержений вулканов. Хотя крупные изверже­ния происходят сравнительно редко и нерегулярно, вследствие чего этот источник аэро з оля по массе з начительно уступает пыль­ным бурям, его значение весьма велико, так как этот аэрозоль забрасывается в верхние слои атмосферы — в стратосферу. Оста­ваясь там в течение нескольких лет, он отражает или поглощает часть солнечной энергии, которая могла бы в его отсутствие достичь поверхности Земли.

Источниками аэро олей явля­ются также технологические про­цессы хозяйственной деятельности людей. Мощный источник мине­ральной пыли — промышленность строительных материалов. Добыча и дробление пород в карьерах, их транспортировка, производство цемента, само строительство — все это загря з няет атмосферу мине­ральными частицами. Например, для получения тонны цемента тре­буется тонко размолоть около 3 тонн исходной породы, а ведь в мире производится не менее полу­миллиарда тонн цемента! В 1983 году только социали стические страны и 6 главных капиталисти­ческих стран произвели 460 мил­лионов тонн цемента. Одна только цементная пром ышленность произ­водит ежегодно около 7 миллионов тонн аэрозолей. Мощный источник твердых аэро­золей — горнодобывающая про­мышленность, в особенности при добыче угля и руд в открытых карь­ерах. В них на больших площадях снимается верхний почвенный слой вместе с растительностью, и обна­жившиеся породы становятся без­защитными перед термическим и ветровым разрушением. Сама добыча, которая состоит, собствен­но, в погрузке угля или руды экска­ваторами на желез нодорожные платформы, является источником огромных количеств пыли, з агряз ­няющей воздух и местность на мно­гие километры вокруг. Этот способ добычи угля или руды кажется наи­более дешевым, но при оценке его рентабельности не учитывается деградация окружающей среды. Но и добыча в шахтах и рудниках — также источник аэроз олей, поскольку около них образ уются горы пустой породы (терриконы), разрушаемые ветром и водой. Много аэроз олей вносят в атмос­феру черная металлургия с ее огромными объемами руды и кокса, цветная металлургия с обогати­тельными фабриками, производ­ство и применение минеральных удобрений и пестицидов и так далее.

Аэро оли попадают в атмосферу при ра з брызгивании растворов. Естественный источник таких аэро­золей — океан, поставляющий хлоридные и сульфатные аэрозоли, образующиеся в результате испа­рения морских брызг, в количестве около миллиарда тонн в год, то есть около 40 процентов всего аэроз оля, поступающего в атмос­феру. Впрочем, вклад от челове­ческой деятельности здесь неве­лик.

Еще один мощный механизм образования аэро олей — это кон­денсация веществ во время горения или неполное сгорание и з -з а недостатка кислорода или низ кой температуры горения. Так, напри­мер, образ уются частицы сажи при сжигании угля и других топлив. В природе главный источник таких аэроз олей — это лесные пожары, люди же добавляют аэрозоли при сжигании угля, нефти, древесины, отходов; аэроз оли поставляют дым металлургических заводов и т. п. В сумме это дает 2—3 процента от общего поступления аэрозолей в атмосферу. При горении образу­ются также газы — сернистый, оки­слы азота, выброс которых, как говорилось выше, приводит к воз­никновению сульфатных и нитрат­ных аэрозолей. Этот вторичный источник аэрозолей вместе с аэро­золями, образующимися из терпе­нов , углеводородов и т.п., дает около 8 процентов общего посту­пления в атмосферу.

Аэрозоли удаляются из атмос­феры тремя путями: сухим осажде­нием под действием тяжести (глав­ный путь для крупных частиц), оса­ждением на препятствиях и осадками.

Все сказанное выше приводит к тому, что размеры, состав, хими­ческие и физические свойства аэро олей весьма разнообразны. Например, их размеры (радиусы) варьируют в основном в миллион раз — от тысячных долей до тысяч микрон (т. е. миллионных долей метра).

Аэро ольное загрязнение.

Выше уже говорилось о действии кислых туманов, раздражающем слизистые оболочки, гла а и кожу. В некоторых случаях аэрозоль может оказывать на человека и психологическое действие: непри­ятные ощущения вызывают некото­рые з апахи, ухудшение видимости, загрязнение одежды смолистыми или сажистыми аэрозолями. Устра­нение ущерба, наносимого аэрозо­лями, иногда требует з начительных затрат.

Тяж лые металлы.

Больше всего это отношение у св нца: 17,5: его выбрасывается в атмосферу много больше Других металлов и в абсолютном выраже­нии — около трети миллиона тонн в год. Зате м идут четыре элемента, которые поступают в атмосферу из-за человеческой деятельности вд вое больше, чем от естественных источников: это кадмий, цинк, мышьяк и никель.

Радиоактивность.

Естественная радиоактивность, интенсивность которой в специфи­ческих, выработанных фи иками единицах, оценивается в 10—20 микрорентген в час, создается в атмосфере двумя источниками. Во-первых, это выделение радиоак­тивных газов и з минералов земной коры. Таково происхождение газа радон-222, который имеет период полураспада в 3,8 суток, и совсем уже короткоживущего торона, он же радон-220: период его полурас­пада 54 секунды. Во-вторых, это воз действие космических лучей на атмосферные газы, приводящее к образованию радиоактивных изо­топов — трития (водород-З), углерода-14, бериллия- 7 и некоторых других.

Рентген — э то количество рентгеновского, или гамма-из луче­ния, которое путем иониз ации соз­дает в воз духе некоторый опреде­ленный электрический заряд (2,58- 10 -4 кулонов на килограмм).

Употребляется также единица рад— это доза радиации, равная энергии 10 мДж, поглощенной кило­граммом облученного вещества. Используется и биологический эквивалент рентгена (бэр); он равен дозе ионизирующего излуче­ния, дающей такой же биологиче­ский эффект, что и рентгенов ское из лучение в один рентген. Отноше­ние между бэром и радом для рент­геновского и гамма-излучения и электронов равно единице, для медленных нейтронов — трем, для альфа-част иц, быстрых нейтронов и протонов—десяти, для осколков деления урана — двадцати. Это отношение характериз ует относи­тельную биологическую эффектив­ ность соответствующего вида излу­чения.

Уже при добыче сырья на урано­вых или шахтах, как и при добыче обычной руды, образуется много пыли, но эта пыль радиоак­тивна. Она и выделяющиеся радио­активные газы могут оказаться в атмосфере при вентилировании шахт. На обогатительных фабриках урановая руда дробится и распыля­ется, и в воздух может попадать не только радиоактивная пыль, но и ядовитые вещества: ванадий, мышьяк, селен и др. Далее кон­ центрат урановой руды растворя­ют, при этом в атмосферу могут выделяться радиоактивные пары, или обрабатывают фтором с обра­зованием и возгонкой шестифтори­стого урана. В дальнейшем это радиоактивное и крайне ядовитое вещество прогоняется по длинным трубам с фильтрами (метод газовой диффузии) или центрифугируется для отделения ядерного топлива — урана-235. Естественно, что веро­ятность просачивания ядовитого и радиоактивного шестифтористого урана через многочисленные сое­динения труб при всем этом довольно велика. Изготовление топливных элементов для атомных электростанций, включающее механическую и тепловую обра­ботку ядерного топлива, осущест­вляется в герметических помеще­ниях с помощью дистанционно управляемых манипуляторов. Тем не менее вероятность попадания радиоактивности в окружающую среду имеется и здесь.

Вероятность радиоактивного загрязнения окружающей среды при нормальной работе атомных электростанций невелика, но аварии, как упоминалось выше, могут иметь катастрофические последствия. По данным междуна­родной организации (МАГАТЭ), за 15 лет с 1971 по 1985 год прои­ ошла 151 авария в 14 странах, то есть ежегодно происходило не менее 10 аварий. Крупных аварий за 30 лет насчитывается три. В 1957 году на АЭС в Уиндскейле (Великобритания) в результате ошибки обслуживающего персо­нала произ ошел выброс воздуха, содержащего радиоактивные изо­топы йода, цез ия и стронция. Активность выброшенных веществ составила около 21 000 Кюри. Произошло загрязнение местности. На территории в 500 квадратных километров в течение 3—6 недель была запрещена продажа молока, поскольку оно оказалось з аражен­ным радиоактивным йодом. (Сум­марная активность радиоактивного вещества из меряется числом рас­падов атомов в секунду. Единицей является беккерель (Бк), равный одному распаду в секунду. Приме­няется также старая единица — Кюри (Ки) (37 миллиардов Бк).

Самая крупная авария (актив­ность выброса 50 миллионов Кюри) на Чернобыльской АЭС в 1986 году привела к гибели и потере здо­ровья многих людей, полностью выключила из хозяйственной деятельности, можно ска ать, из жи з ни, огромную территорию, нане­сла большой материальный урон. Дополнительные последствия, которые могут проявиться в буду­щем, сейчас еще невозможно оце­нить.

Исполь ованное на атомных электростанциях топливо, в кото­ром содержится большое количе­ство различных радиоактивных веществ, может быть исполь з овано повторно, если отделить от этих веществ оставшийся уран. Это делается на специальных заводах, где отработанное топливо подвер­гается механической и химической переработке. При этом в атмос­феру могут выбрасываться радио­активные газы: криптон-85 (период полураспада 10,6 года), йод-131 (8,1 суток), рутений-103 (40 суток) и рутений-106 (один год).

Нельзя сбрасывать со счетов радиоактивное загрязнение воз­духа на заводах ядерного оружия, которые все еще продолжают производить свою смертоносную продукцию, а также при транспор­тировании сырья, готовых и делий или отходов и при подземных испы­таниях ядерного оружия. Недавно стало и з вестно о взрыве храни­лища радиоактивных отходов на заводе под Челябинском, произо­шедшем в 1957 году. При аварии произошел выброс отходов с актив­ностью около 2 миллионов Кюри, и хотя 90 процентов ее осталось в пределах завода, загрязненной (в основном из отопом стронций-90) оказ алась территория размерами примерно 300х10 километров.

Естественная ра иоактивность д ает каждому человеку в течение жиз ни дозу в 5—10 бэр. Это облу­чение наряду с другими факторами ответственно за современный «нормальный» уровень мутаций и раковых з аболеваний. Логично думать, что любое дополнительное облучение увеличит вероятность этих мутаций и заболеваний. Поэтому некоторые ученые спра­ведливо считают, что (с точки зре­ния прежде всего генетических последствий) безопасного уровня радиации вообще не существует.

Загрязнение воздуха внутри помещений.

В воздухе замкнутых помещений может находиться, по существу, весь известный спектр агрязните­лей, кроме, быть может, озона. Прежде всего следует сказать о радоне, выделяющемся из з емных недр. На открытом воздухе он обычно не представляет какой-либо опасности. Однако при нали­чии самых нез начительных трещин в фундаменте з даний в условиях плохой вентиляции его концентра­ция в воз духе помещений может достигать опасного уровня. Так, проведенное в США обследование показало, что примерно в 8 мил­лионах домов концентрация радона превышает безопасный уровень. В ряде случаев была з афиксирована концентрация, при которой рабочие урановых предприятий должны пользоваться респираторами. Источниками токсичных веществ в воз духе помещений могут быть некоторые строительные и отде­лочные материалы. Например, асбоцементные листы или выделя­ющие формальдегид декоративные панели), тепло- и электроизоля­ционные материалы ( тот же асбест, поливинилхлорид, полихлорбифенилы и другие органические соеди­нения), раз личные синтетические клеи и т. д. Другие источники — это всевозможные препараты, приме­няемые в быту (например, краски и растворители, пестициды, освежители воздуха).

Наконец, нельз я не сказ ать о наружных загрязнителях, таких, как пыль, выхлопные газ ы, которые так или иначе проникают и задерживаются внутри помещений.

3. Загрязнение почвы.

Почти все загрязняющие вещества, которые первонача ьно попали в атмосфе­ру, в конечном итоге оказываются на поверхности суши и воды. Осе ­ дающие аэрозоли могут содержать ядовитые тяжелые металлы — сви­ нец, кадмий, ртуть, медь, ванадий, кобальт, никель. Обычно они мало­подвижны и накапл иваются в почве. Но в почву попадают с дождями также кислоты. Соединя­ясь с ними, металлы могут перехо­дить в растворимые соединения, доступные растениям. В раствори­мые формы переходят также веще­ства, постоянно присутствующие в почвах, что иногда приводит к гибе­ ли растений. Примером может слу­жить весьма распространенный в почвах алюминий, растворимые соединения которого поглощаются корнями деревьев. Алюминиевая болезнь, пря которой нарушается структура тканей растений, оказы­в ается для деревьев смертельной.

С другой стороны, кислые дожди вымывают необходимые для расте­ний питательные соли, содержа­щие а от, фосфор и калий, что сни­жает плодородие почв. Повышение кислотности почв из-за кислых дождей губит полезные почвенные микроорганизмы, нарушает все микробиологические процессы в почве, делает нево з можным суще­ствов ание ряда растений и иногда оказ ывается благоприятным для раз вития сорняков.

Все это можно на вать непредна­меренным загря з нением почв.

Минеральные удобрения.

Ясно. что после снятия урожая почва нуждается восстановлен и и плодородия. Но чрезмерное ис­польз ование удобрений приносит вред. Оказалось, что при увеличе­нии дозы удобрений урожайность сначала быстро растет, но затем прирост становится все меньше и наступает момент, когда дальней­шее увеличение дозы удобрений не дает никакого прироста урожайно­сти, а в избыточной дозе минераль­ные вещества могут оказаться для растений токсичными. Этот так называемый закон предельной уро­ жайности, как считает француз­ский эколог Ф. Рамад, неизвестен большинству людей, занима­ющихся сельским хозяйством, а производители удобрений о нем умышленно умалчивают. Лишними оказываются питательные веще­ства не только сверх этой предель­ной дозы, но и значительная часть тех, которые вносятся сверх неко­торой оптимальной доз ы. Ведь тот факт, что прирост урожайности резко уменьшается, говорит о том, что растения не усваивают излиш­ков питательных веществ. Прино­сит вред и несоблюдение правиль­ного соотношения между азотными, фосфорными и калийными удобре­ниями. Например, оптимальная доза азотных удобрений не достиг­нет желаемого эффекта, и боль­шое количество в несенного азота окажется лишним, если будет вне­сено фосфорных удобрений мень­ше, чем требуется.

Избыток удобрений выщелачи­вается и смывается с полей талыми дождевыми водами (и ока з ы­вается в водоемах суши и в море).

Из лишние азотные удобрения, а они по массе преобладают по срав­нению с калийными и фосфорными,в почве распадаются, и газ ообраз ­ный азот выделяется в атмосферу, а органическое вещество гумуса, составляющего основу плодородия почвы, разлагается на углекислый газ и воду. Поскольку органическое вещество не возвращается в почву, гумус истощается и почвы дегради­ руют. Особенно сильно страдают крупные з ерновые хозяйства, не имеющие отходов животноводства (например, на бывшей целине Ка­захстана, Предуралья и Западной Сибири).

Кроме нарушения структуры и обеднения почв, и быток нитратов и фосфатов приводит к серьезному ухудшению качества продуктов питания людей. Часть нитратов и фосфатов, особенно когда имеется их и з быток, включается в ткани растений в виде свободных ионов нитратов и фосфатов. Некоторые растения (например, шпинат, салат) способны накапливать нитраты в больших количествах. Съев 250 граммов салата, выра­щенного на переудобренной гряд­ке, можно получить дозу нитратов, эквивалентную 0,7 грамма аммиач­ной селитры. В кишечном тракте нитраты превращаются в ядовитые нитриты, которые в дальнейшем могут образовать нитрозамины — вещества, обладающие сильными канцерогенными свойствами. Кроме того, в крови нитриты оки­сляют гемоглобин и лишают его способности связ ывать кислород, необходимый для жив ой ткани. В рез ультате возникает особый вид малокровия — метгемоглобинемия.

Я охимикаты

Все эти вещества ядовиты. Пер­выми появились инсектициды на основе соедине­ний, главным представителем которых является ДДТ. Это очень устойчивые вещества, и поэтому они могут накапливаться в почве и сохраняться десятилетиями. По имеющимся оценкам, более поло­вины всего произведенного ДДТ (в 1970—1982 годах в большинстве высокоразв итых стран было запре­щено его применение) до сих пор циркулирует в природе. С учетом этих недостатков были раз рабо­таны довольно быстро разруша­ющиеся фосфорорганические и менее ядовитые для теплокровных животных карбаматные инсектици­ды. В состав фунгицидов входят соли меди, соединения серы и рту­ти, а гербицидов — соли меди, железа, органические соединения, содержащие хлор, фосфор, ртуть.

Использование ядохимикатов, несомненно, сыграло существен­ную роль в повышении урожайно­сти сельскохозяйственных культур. Иногда ядохимикаты спасают до 20 процентов урожая. Но вскоре обна­ружились и весьма отрицательные последствия применения ядохими­катов. Ока алось, что их действие значительно шире, чем их на з наче­ние. Инсектициды, например, дей­ствуют не только на насекомых, но и на теплокровных животных и на человека. Убивая вредных насеко­мых, они убивают и множество полезных насекомых, в том числе тех, которые являются естествен­ными врагами вредителей. Систе­матическое применение пестици­дов стало приводить не к искоренению вредителей, а к возникновению новых рас вредителей, не вос­приимчивых к действию данного пестицида. Уничтожение конкурен­тов или врагов того или иного из вредителей привело к появлению на полях новых вредителей. Приш­лось повышать доз ы пестицидов в 2—3 раза, а иногда в десять и более раз. На это же толкало и несовершенство технологии приме­нения пестицидов. По некоторым оценкам, из -за этого в нашей стране до 90 процентов пестицидов тратится впустую и лишь загряз ­няет окружающую среду, нанося ущерб здоровью людей. Нередки случаи, когда из -з а халатности химизаторов пестициды рассыпа­ются буквально на головы работа­ющих в поле людей.

Некоторые растения (в частно­сти, корнеплоды) и животные (на­пример, обычные дождевые черви) накапливают в своих тканях пести­циды в значительно больших кон­центрациях, чем почва. В резуль­тате пестициды попадают в пище­вые цепи и достигают птиц, диких и домашних животных, человека. По оценкам 1983 года, в ра вива­ющихся странах от отра в ления пестицидами ежегодно заболевало 400 тысяч и умирало около 10 тысяч человек.

4. Загрязнение воды., Потребности в воде.

В 1980 го у человечест в ом было использовано для различных нужд 3494 кубокилометра воды (66 про­центов в сельском хозяйстве, 24.6 — в промышленности, 5, 4 — на бытовые нужды, 4 процента — испарение с поверхности искус­ственных водохранилищ).

Это составляет 9—10 процентов от гло­бального речного стока. В процессе использования 64 процента изъя­той в оды испарилось, а 36 процен­тов были возвращены в природные водоемы.

В нашей стране в 1985 году для хозяйственных нужд было взято 327 чистой воды, а объем сброса составил 150 кубоки­лометров (в 1965 году он равнялся 35 кубокилометрам).

В 1987 году в СССР было взято для всех нужд 339 кубокилометров пресной воды (из подземных источников около 10 процентов), то есть примерно 1200 тонн на душу населения. Из общего объем а 38 процентов пошло на нужды промышленности, 53 — на нужды сельского хозяйства (вклю­чая орошение засушливых земель) и 9 процентов — на питье и хоз я­йственно-бытовые нужды. В 1988 году было вз ято уже около 355— 360 кубокилом етров.

Загрязнение во ы., Биологическое загрязнение.

Степень биологического загряз­нения характеризуется главным обра ом тремя пока з ателями. Один из них — это количество кишечных палочек (так называемых лактозоположительных, или ЛКП) в литре воды. Оно характеризует загряз­ненность воды продуктами жизне­деятельности животных и указы­вает на возможность присутствия также болезнетворных бактерий и вирусов. По Государственному стандарту 1980 года, например, купание считается без опасным, если в воде содержится не более 1000 ЛКП на литр. Если в воде содержится от 5000 до 50 000 ЛКП на литр, то вода считается грязной, и при купании есть риск заразиться. Если же в литре воды содержится более 50 000 ЛКП, то купание недо­пустимо. Понятно, что после обез­зараживания путем хлорирования или озонирования питьевая вода должна удовлетворять гораздо более жестким стандартам.

Для характеристики загрязнен­ности органическими веществами служит другой показатель — био­химическое потребление кисло­рода Он пока з ывает, какое количество кислорода требуется микроорганизмам для переработки всего подверженного раз ложению органического вещества в неорга­нические соединения (в течение, скажем, пяти суток — тогда это БПК 5 . По принятым у нас в стране стандартам БПК 5 у питьевой воды не должен превышать 3 милли­граммов кислорода на литр воды. Наконец, третий показатель — это содержание раств оренного кисло­рода. Он обратно пропорционален В ПК. Питьевая вода должна содер­жать более 4 миллиграммов рас­творенного кислорода на литр.

Химическое загрязнение

В табл. 3 приведены скорости загрязнения поверхностных вод ядовитыми тяжелыми металлами (по данным тех же авторов что и сведения о загрязнении металлами воздуха и почвы).

В эти данные вхо­дит 30 процентов массы металлов, поступающих в атмосферный воз дух.

Как и в загря нении атмосферы, в загрязнении поверхностных вод (и, несколько забегая вперед, вод океана) среди тяжелых металлов пальму первенства держит свинец: у него отношение искусственного источника к естественному превы ­ шает 17. У других тяжелых метал­лов — меди, цинка, хрома, никеля, кадмия искусственный источник поступления в природные воды также больше естественного, но не настолько, как у свинца. Большую опасность представляет загрязне­ние ртутью, попадающей в природ­ные воды из воздуха, лесов и полей, обрабатываемых пестицида­ми, а иногда и в рез ультате про­мышленных сбросов. Исключи­тельно опасен сток вод из ртутных месторождений или рудников, где ртуть может переходить в раство­римые соединения. Эта угроз а делает крайне опасными проекты водохранилищ на алтайской реке Катунь.

В последние годы существенно увеличилось поступление в поверх­ностные воды суши нитратов из-за нерационального применения азот­ных удобрений, а также и — з а уве­личения выбросов в атмосферу с выхлопными газ ами автомобилей. Это же относится и к фосфатам, для которых, помимо удобрений, источником служит все более широкое применение раз личных моющих средств. Опасное химичес­кое загряз нение создают углеводо­роды — нефть и продукты ее пере­работки, которые попадают в реки и озера как с промышленными сбросами, в особенности при добыче и транспортировке нефти, так и в рез ультате смыва с почвы и выпадения из атмосферы.

Разбавление сточных вод.

Разбавление сточных вод сни­жает качество оды в природных водоемах, но обычно не достигает с в оей главной цели — предотвра­щения вреда для з доровья людей. Дело в том, что вредные примеси, содержащиеся в воде в ничтожных концентрациях, накапливаются в некоторых организ мах, употребля­емых людьми в пищу. Сначала ядо­витые вещества попадают в ткани мельчайших планктонных организ ­мов, затем они накапливаются в организмах, которые в процессе дыхания и питания фильтруют большое количество воды (моллюски, губки и т. п.) и в конечном итоге как по пищевой цепи, так и в про­цессе дыхания концентрируются в тканях рыб. В рез ультате концент­рация ядов в тканях рыб может стать больше, чем в воде, в сотни и даже тысячи раз .

В 1956 году в (остров Кюсю, Япония) разразилась эпиде­мия неиз вестной болезни с полным расстройством центральной нервной систем ы. У людей ухудши­лись з рение, слух, нарушалась речь, терялся раз ум, движения ста­новились неуверенными, сопрово­ждались дрожью. Болез нь Минамата охватила несколько сотен человек, в 43 случаях был з ареги­стрирован смертельный исход. Оказ алось, что виновником был химический з авод на берегу бухты. Тщательные исследования, кото­рым администрация завода первоначально чинила всяческие пре­пятствия, показали, что в его сточ­ных водах содержатся соли ртути, которые используются при произ ­водстве ацетальдегида в качестве катализаторов. Соли ртути и сами ядовиты, а под действием специ­фических микроорганиз мов в бухте они превращались в исключи­тельно ядовитую метилртуть, кото­ рая концентрировалась в тканях рыб в 500 тысяч раз. Этой рыбой и отравлялись люди.

Разбавление промышленных сто­ков и тем более растворов удобре­ний и пестицидов с сельскохозяй­ственных полей происходит часто уже в самих природных водоемах. Если водоем непроточный или сла­бопроточный, то сброс в него орга­нических веществ и удобрений ведет к переи бытку питательных веществ — эвтрофикации и з арас­танию водоема. Сначала в таком водоеме накапливаются питатель­ные вещества и бурно разраста­ются водоросли, главным образ ом микроскопические синезеленые. После их отмирания биомасса опус­кается на дно, где происходит ее минерал из ация с потреблением большого количества кислорода. Условия в глубинном слое такого водоема становятся непригодными для жиз ни рыб и других организ­мов, нуждающихся в кислороде. Когда весь кислород исчерпан, начинается бескислородное бро­жение с выделением метана и сероводорода. Тогда происходит отравление всего водоема и гибель всех живых организмов (кроме некоторых бактерий).

Такая неза­видная судьба грозит не только озерам, в которые сбрасываются бытовые и промышленные стоки, но и некоторым замкнутым и полу­з амкнутым морям.

Ущерб водоемам, в особенности рекам, наносится не только увеличением объема сбрасываемых загря нений, но и уменьшением способности водоемов к самоочи­щению. Яркий пример тому—ныне­шнее состояние Волги, которая представляет собой скорее каскад слабопроточных водохранилищ, чем реку в исконном смысле этого слова. Ущерб очевиден: это и уско­рение з агрязнения, и гибель вод­ных организмов в местах водоз або­ра, и нарушение привычных мигра­ционных движений, и потеря цен­ных сельскохоз яйственных угодий, и многое другое. А компенсируется ли этот ущерб производимой на гидроэлектростанциях энергией? Следует з аново рассчитать все за и против с учетом современных эко­логических требований существо­вания людей. И может оказаться, что целесообраз нее раз обрать некоторые плотины и ликвидиро­вать водохранилища, чем из года в год терпеть убытки.

Физическое загрязнение

При значительном тепловом загрязнении рыба задыхается и погибает, так как ее потребность в кислороде растет, а растворимость кислорода уменьшается. Количе­ство кислорода в воде умень­шается еще и потому что при теп­ловом загрязнении происходит бур­ное развитие о д ноклеточных водо­рослей: вода «зацветает» с после­дующим гниением отмирающей рас­тительной массы. Кроме того, теп­ловое з агряз нение существ енно повышает ядовитость многих хими­ ческих загрязнителей, в частности тяжелых металлов.

При нормальной работе ядерных реакторов в охлаждающее веще­ство, в качестве которого применя­ется главным образом вода, могут попасть нейтроны, под действием которых атомы этого вещества и примеси, прежде всего продукты корро ии, становятся радиоактив­ными. Кроме того, защитные цирко­ниевые оболочки тепловыделя­ющих элементов могут иметь микротрещины, через которые в охлаждающую жидкость могут попадать продукты ядерных реак­ций. Хотя такие отходы слабоак­тивны, они все же могут повышать общий фон радиоактивности. При авари я х отходы могут оказаться более активными. В природных во­доемах радиоактивные вещества подвергаются физ ико-химическим превращениям — концентрации на вз вешенных частицах (адсорбция, в то м числе ионообменная), осажде­ни ю, осадкообразованию, переносу течениями, поглощению живыми организмами, накоплению в их тка­ нях. В живых организмах накаплива­ются прежде всего радиоактивная ртуть, фосфор, кадмий, в грунте — ванадий, цез ий, ниобий, цинк, в воде остаются сера, хром, йод.

Загрязнение

С речным стоком, объем кото­рого составляет около 36—38 тысяч в океаны и моря поступает огромное количе­ство загря з нителей во взвешенном и растворенном виде. По нек ото­рым оценкам, этим путем в океан ежегодно попадает более 320 мил­лионов тонн железа, до 200 тысяч тонн свинца, 110 миллионов тонн серы, до 20 тысяч тонн кадмия, от 5 до 8 тысяч тонн ртути, 6,5 мил­лиона тонн фосфора, сотни мил­ лионов тонн органических загряз ­нителей. Особенно достается вну­тренним и полузамкнутым морям, у которых отношение площадей водосбора и самого моря больше, чем у всего Мирового океана (на­пример, у Черного моря оно равно 4,4 против 0,4 у Мирового океана).

По минимальным оценкам, со сто­ком Волги в Каспийское море поступает 367 тысяч тонн органики, 45 тысяч тонн азота, 20 тысяч тонн фосфора, 13 тысяч тонн нефтепро­дуктов. Отмечается высокое содержание хлорорганических пестицидов в тканях осетровых рыб и килек — главных объектов промысла. В Аз овском море с 1983 по 1987 год содержание пест ици­дов выросло более чем в 5 раз. В Балтийском море за последние 40 лет содержание кадмия выросло на 2,4 процента, ртути — на 4, свинца — на 9 процентов.

Поступающие с речным стоком агрязнения распределяются неравномерно по акватории оке­ана. Около 80—95 процентов взве­шенного вещества и от 20 до 60 процентов растворенного вещест в а речного стока теряется в дельтах и эстуариях рек и не проникает в оке­ан. Та часть загряз нений, которая все-таки прорывается через обла­сти «лавинного осаждения» в устьях рек, перемещается в основ­ном вдоль берега, оставаясь в пре­делах шельфа. Поэтому роль реч­ного стока в загрязнении открытого океана не столь велика, как это думали раньше.

Атмосферные источники загряз­нения океана по некоторым в дам загря з нителей сравнимы с речным стоком. Это касается, например, свинца, средняя концентрация которого в водах Северной Атлан­тики з а сорок пять лет повысилась с 0,01 до 0,07 миллиграмма на литр и уменьшается с глубиной, прямо указ ывая на атмосферный источ­ник. Ртути из атмосферы поступает почти столько же, сколько и с реч­ным стоком. Половина пестицидов, содержащихся в океанских водах, также поступает из атмосферы. Несколько меньше, чем с речным стоком, из атмосферы в океан поступает кадмия, серы, углеводо­родов.

Нефтяное загрязнение.

Около половины искусственных источников со дае т деятельность людей непосредственно на морях и океанах. На втором месте нахо­дится речной сток (в месте с поверхностным стоком с прибреж­ной территории) и на третьем — атмосферный источник. Советские специалисты М. Нестерова, А. Симонов, И. Немировская дают следующее соотношение между этими источниками — 46:44:10.

Наибольший вклад в нефтяное агрязнение океа н а вносят мор­ские перевозки нефти. Из 3 мил­лиардов тонн нефти, добываемых в настоящее время, морем перево­з ится около 2 миллиардов тонн. Даже при безаварийном транс­порте происходят потери нефти при ее погруз ке и раз груз ке, сбра­сывании в океан промывочных и балластных вод (которыми з апол­няют танки после выгруз ки нефти), а также при сбросе так наз ывае­мых льяльных вод, которые всегда скапливаются на полу машинных отделени й любых судов. Хотя меж­дународные конвенции запрещают сброс загрязненных нефтью вод в особых районах океана (таковыми считаются, например, Средиз ем­ное, Черное, Балтийское, Красное моря, а также зона Персидского залива), в непосредственной близо­сти от берега в любом районе оке­ана, налагают ограничения на содержание нефти и нефтепродук­тов в сбрасываемых водах, они все же не устраняют загрязнения; при погруз ке и разгрузке разливы нефти происходят в результате ошибок персонала или из -за отказа оборудования.

Но наибольший ущерб окружа­ющей среде и биосфере наносят внезапные разливы больших коли­честв нефти при авариях танкеров, хотя такие ра ливы и составляют только 5—6 процентов суммарного нефтяного загрязнения. Летопись этих аварий столь же длинна, как и история самих морских перевозок нефти. Считается, что первая такая авария произошла в пятницу 13 декабря 1907 года, когда семи­мачтовая парусная шхуна «Томас Лоусон» гру з оподъемностью 1200 тонн с груз ом керосина в штормо­вую погоду разбилась о скалы у островов Силли недалеко от юго-западной оконечности Великобри­тании. Причиной аварии была пло­хая погода, долгое время не позво­лявшая провести астрономическое определение местоположения суд­на, в результате чего оно отклони­лось от курса, и жестокий шторм, сорвавший шхуну с якорей, бросил ее на скалы. В качестве курьез а отметим, что самая популярная книга писателя Томаса Лоусона, имя которого носила погибшая шху­на, называлась «Пятница, 13 число».

В ночь на 25 марта 1989 года аме­риканский танкер Валдиэ», только что отошедший от нефтепроводного терминала в порту Валдиз (Аляска) с грузом 177 400 тонн сырой нефти, проходя проливом Принца Уильяма, напо­ролся на подводную скалу и сел на мель. Из восьми пробоин в его кор­пусе вылилось более 40 тысяч тонн нефти, уже через несколько часов образовавшей пятно площадью более 100 квадратных километров. В нефтяном озере барахтались тысячи птиц, всплывали тысячи рыб, гибли млекопитающие. В дальнейшем пятно, расширяясь, дрейфовало на юго-запад, загряз­няя прилегающие берега. Был нанесен колоссальный ущерб флоре и фауне района, многие местные виды оказ ались под угро­зой полного исчез новения. Через полгода нефтяная компания «Экссон», истратив 1400 миллионов долларов, прекратила работы по ликвидации последствий катастро­фы, хотя до полного восстановле­ния экологического здоровья рай­она было еще очень далеко. Причи­ной аварии была безответствен­ность капитана судна, который, находясь в нетрез вом состоянии, доверил управление танкером не имеющему на то право человеку. Неопытный третий помощник, испу­гавшись появившихся вблизи льдин, ошибочно изменил курс, в результате чего и произошла ката­строфа.

В промежутке между этими двумя событиями погибло не менее тысячи нефтеналивных судов, и еще много больше было аварий, в которых удавалось сохранить суд­но. Количество аварий увеличива­лось, и их последствия становились все более серьезными по мере уве­личения объема морских перевозок нефт . В 1969 и 1970 годах, напри­мер, было по 700 аварий разного масштаба, в результате которых в море оказывалось более чем по 200 тысяч тонн нефти. Причины аварий самые различные: это и навигационные ошибки, и плохая погода, и технические неполадки, и безответственность персонала. Стремление удешевить пере­возки нефти привело к тому, что появились супертанкеры водоизме­щением более 200 тысяч тонн. В 1966 году было построено первое такое судно — японский танкер «Идемицу-мару» (206 тысяч тонн), затем появились танкеры еще большего водоизмещения: «Юни-верс-Айрлэнд» (326 тысяч тонн-дедвейт): «Ниссэки-мару» (372 тысячи тонн); «Глобтик Токио» и «Глобтик Лондон» (по 478 тысяч тонн); «Батиллус» (540 тысяч тонн): «Пьер Гийом» (550 тысяч тонн) и др. В расчете на тонну грузовмести­мости это действительно умень­шало расходы на постройку и экс­плуатацию судна, так что стало выгоднее перевозить нефть из Пер­сидского з алива в Европу, огибая южную оконечность Африки, нежели обычными танкерами по кратчайшему пути — через Суэц кий канал (ранее такой маршрут из-за израильско-арабской войны был вынужденным).

Однако в резуль­ тате появилась еще одна причина нефтяных раз ливов: супертанкеры стали довольно часто раз ламы­ваться на очень крупных океанских волнах, которые могут иметь дли­ну, соизмеримую с длиной танке­ров.

Корпус супертанкеров может не выдержать, если его средняя часть окажется на гребне такой волны, а нос и корма зависнут над подошва­ми. Такие аварии отмечались не только в области знаменитых у Южной Африки, где волны, разгоняемые западными ветрами «ревущих сороковых», выходят на встречное течение Игольного мыса, но и в других рай­онах океана.

Катастрофой века на сегодняш­ний день остается авария, произо­шедшая с супертанкером который в районе острова Уэссан (Бретань, Франция) потерял управление из-за неисправностей рулевого механизма (и время, ушедшее на торг со спасательным судном) и сел на скалы у этого острова. Это случилось 16 марта 1978 года. Из танков «Амоко Кадис» в море вылились все 223 тысячи тонн сырой нефти. Это соз ­дало тяжелую экологическую ката­строфу в обширном районе моря, при легающем к Бретани, и на боль­шом протяжении его берега. Уже за первые две недели после ката­строфы излившаяся нефть распро­странилась по огромной акватории, з агрязненным оказ алось побе­режье Франции на протяжении 300 километров. В пределах несколь­ких километров от места аварии (а оно произ ошло в 1,5 мили от бере­га) погибло все живое: птицы, рыбы, ракообразные, моллюски, другие организмы. По свидетель­ству ученых, никогда не приходи­лось видеть биологического ущерба на такой огромной площади ни в одном из предыдущих нефтя­ных загрязнений. По прошествии месяца после раз лива 67 тысяч тонн нефти испарилось, 62 тысячи достигли берега, 30 тысяч тонн рас­пределились в водной толще (из них 10 тысяч тонн разложились под воздействием микроорганиз мов), 18 тысяч тонн были поглощены отложениями на мелководье и 46 тысяч тонн были собраны с берега и с поверхности воды механичес­ким путем.

Основные физико-химические и биологические процессы, посред­ством которых происходит само­очищение океанских вод, — это растворение, биологическое разло­жение, испарение, фотохимическое окисление, агло­мерация и осаждение. Но даже через три года после аварии тан кера «Амоко Кадис» в донн ых осад­ках прибрежной зоны сохранялись нефтяные остатки. Через 5—7 лет после катастрофы содержание ароматических углеводородов в дон ных отложениях оставалось выше нормы в 100 —200 раз. По мнени ю ученых, для восстановле­ния полного экологического равно­весия при родной среды должны пройти многие годы.

Аварийные разливы происходят при добыче нефти на морском шельфе, в настоящее время составляюще около трети всей мировой добычи. В среднем такие аварии вносят сравнительно небольшой в к лад в нефтяное з агрязнение океана, но отдельные аварии им еют катастрофический характер. К ним можно отнести, например, аварию на буровой уста­ нов ке «Иксток-1» в Мексиканском зали ве в июне 1979 года. Вырвав­шийся из-под контроля нефтяной фонтан извергался более полуго­да. За это в ремя в море оказалось почти 500 тысяч тонн нефти (по другим данн ым, почти миллион тонн).

Время самоочищения и ущерб биосфере при разливах нефти тесно связаны с климатичес­кими и погодными условиями, с господствующей циркуляцией вод. Несмотря на огромное количество из лившейся во время аварии на платформ е «Иксток-1» нефти, которая протянулась широкой полосой на тысячу километров от мексиканского берега до Техаса (США), лишь нез начительная ее доля достигла прибрежной зоны. Кроме того, преобладание штормо­вой погоды способствовало быст­рому раз бавлению нефти. Поэтому этот раз лив не и мел столь замет­ных последствий, как катастрофа « Амоко Кадис». С другой стороны, если для восстанов ления экологи­ческого равновесия в зоне «ката строфы века» потребов алось не менее 10 лет, то> по прогнозам ученых, на самоочищение з агряз ­ненных вод во время аварии «Экс-сон Валдиз» в з алив е Принца Уиль­яма (Аляска) уйдет от 5 до 15 лет, хотя количеств о разлившейся нефти там в 5 раз меньше. Дело в том, что низкие температуры воды з амедляют испарение нефти с поверхности и существенно сни­жают активность нефтеокисляющих бактерий, которые в коне­чном счете уничтожают загрязне­ние нефтью. К тому же сильно изрез анные скалистые берега з алива Принца Уильяма и остро­вов, в нем расположенных, обра­зуют многочисленные «карманы» нефти, которые будут служить дол­говрем енными источниками загряз­нения, да и нефть там содержит большой процент тяжелой фрак­ции, которая гораздо медленнее раз лагается, чем легкая нефть.

Благодаря действию ветра и течений нефтяное загря нение з атронуло, по существу, весь Миро­вой океан. При этом степень загрязненности океана из года в год растет.

В открытом океане нефть встре­чается глазным образом в виде тонкой пленки (с минимальной тол­щиной до 0,15 микрометра) и смо­ляных комков, которые образуются из тяжелых фракций нефти. Если смоляные комки о з действуют пре­жде всего на растительные и животные морские организмы, то нефтяная пленка, кроме того, вли­яет на многие физические и хими­ческие процессы, происходящие на поверхности раздела океан — атмосфера и в слоях, прилегающих к нему. При росте з агрязненности океана такое влияние может при­обрести глобальный характер.

Прежде всего нефтяная пленка увеличивает долю отражаемой от поверхности океана солнечной эне­рг и и уменьшает долю поглощае­мой энергии. Тем самым нефтяная пленка оказывает влияние на про­цессы теплонакопления в океане. Несмотря на уменьшение количе­ства поступающего тепла, поверх­ностная температура при наличии нефтяной пленки повышается тем больше, чем толще нефтяная плен­ка. Океан явля ется главным поставщиком атмосферной влаги, от которого в з начительной мере зависит степень увлажнен ия мате­риков. Нефтяная пленка затруд­няет испарения влаги, а при доста­точно большой толщине (поряд ка 400 микрометров) может свести его практическ и к нулю. Сглаживая в етров ое волнение и препятствуя образованию в одяных брызг, кото­рые, испаряясь, оставляют в атмос­фере мельчайшие частички соли, нефтяная пленка изменяет солеобмен между океаном и атмосферой. Это также может повлиять на количество атмосферных осадков над океаном и материками, так как ч асти чки соли составляют значи­тельную часть ядер конденсации, н еобходимых для образ ования дождя.

Опасны отходы. По данным Между на родной комиссии по окру­жающей среде и развитию ООН, количество опасных отходов, еже­годно создаваемых в мире, состав­ ляет более 300 миллионов тонн, причем 90 процентов из них прихо­дится на промышленно развитые страны. Было время, и не столь уж далекое, когда опасные отходы с химических и других предприятий попадали на обычные городские свалки, сбрасывались в водоемы, захоронялись в земле без принятия каких-либо мер предосторожности. Однако вскоре то в одной, то в дру­гой стране стали все чаще прояв­ляться порой весьма трагические последствия легкомысленного обращения с опасными отходами. Широкое экологическое движение общественности в промышленно развитых странах в ынудил о прави­тельства этих стран существенно ужесточить законодательство по захоронению опасных отходов.

В последние годы проблемы опасных отходов стали принимать поистине глобальный характер. Опасные отходы стали чаще пере­секать государственные гран цы, иногда без ведома правительства или общественности страны-полу ­ чателя опасного груза. Особенно страдают от такого вида торговли слаборазвитые страны. Некоторые получившие огласку вопиющие слу­чаи буквально потрясли мировую общественность. 2 июня 1988 года в районе небольшого пор га Коко (Нигерия) было обнаружено около 4 тысяч тонн ядовитых отходов иностранного происхождения. Груз был ввез ен из Италии пятью парти­ями с августа 1987 года по май 1988 года по поддельным документам. Правительство Нигерии аресто­вало виновных, а з аодно подвер­нувшееся итальянское торгов ое судно «Пьяве», с тем чтобы отпра­в ить опасные отходы обратно в Италию. Нигерия отозв ала своего посла из Италии и пригроз ила пере­дать дело в международный суд в Гааге. Обследование свалки пока­зало, что в металлических бочках содержатся летучие растворители, и имеется риск пожара или вз рыва с выделением исключительно ядо­витого дыма. Около 4000 бочек были старые, ржавые, многие раз­дулись от жары, а в трех из них было обнаружено высокорадиоактивное вещество. При погруз ке отходов для отправки в Италию на судно «Карин Б», ставшее печально знаменитым, пострадали грузчики и члены экипажа. Некото рые из них получили сильные хими­ческие ожоги, другие страдали рво­той с кровью, один человек был частично парализован. К середине августа свалка была очищена от з аграничного « подарка».

В марте того же года в камено­ломне на острове Касса напротив столицы Гвинеи, было захоронено 15 000 тонн «сырого материала для кирпича» (так гла­сили документы).

По тому же кон­тракту вскоре должны были доста­вить еще 70 тысяч тонн такого же гру з а. Через 3 месяца газеты сооб­щили, что растительность на острове сохнет и погибает. Оказ а­лось, что доставленный норвеж­ской компанией груз представляет собой богатую ядовитыми тяже­лыми металлами з олу из печей по сжиганию бытового мусора из Филадельфии (США).

Норвежский консул, который оказ ался директо­ром норвежско-гвинейской компа­нии — прямой виновницы случив­шегося, был арестован. Отходы были вывез ены.

Даже полный список изве тных на сегодня случаев не будет исчер­пывающим, так как, безусловно) не все случаи получают огласку. 22 марта 1989 года в Базеле (Швейца­рия) представители 105 государств подписали договор о контроле за экспортом ядовитых отходов, кото­рый вступит в силу после ратифи­кации по крайней мере 20 страна­ми. Гво з дем этого договора счи­тается непременное условие: пра­вительство принимающей страны должно заранее дать письменное разрешение на прием отходов. Договор, таким образом, исклю­чает мошенническ ие сделки, но уз аконивает сделки между прави­тельствами. Экологическое движе­ние «з еленых» осудило этот дого­вор и требует полного з апрещения экспорта опасных отходов. О действенности мероприятий, предпринимаемых «зелеными» , свидетельствует судьба некоторых кораблей, неосмотрительно при­нявших на свой борт опасный груз. Не сраз у смогли выгрузиться уже упомянут ое «Карин Б» и «Дип Си Кэрриер», вывозившие опасный груз из Нигерии, долго скиталось по морям судно, вышедшее в августе 1986 года из Филадельфии с 10 тысячами тонн отходов, груз кото­рого не приняли ни на Багамских островах, ни в Гондурасе, Гаити, Доминиканской Республике, Гви­нее-Бисау. Более года путешество­вал опасный груз с цианидом, пестицидами, диоксином и другими ядами, прежде чем он вернулся на борту сирийского судна «Занообия» в порт отправления Марина де Кар-рара (Италия).

Проблема опасных отходов должна решаться, безусловно, на пути со дания безотходных техно ­ логий и раз ложения отходов на без вредные соединения, например с помощью высокотемпературного сжигания.

Радиоактивны отходы.

5. Грозит ли человечеству глобальная экологическая катастрофа?

Формально пока нельзя гово­рить, что мы переживаем глоба­льную экологическую катастрофу, поскольку на Земле еще имеются районы, где нет серьезных следов загрязнения. Но таких районов становится все меньше, а некоторые виды з агряз ­нений отмечаются даже в самых удаленных от их источников местах, например в Антарктиде. Но может быть и неправильно в дан­ном случае подходить с такой мер­кой к понятию глобальной ката­строфы? Надо учитывать, что более 40 процентов населения з ем­ного шара живет в городах (в раз­витых странах городское населе­ние превышает 70 процентов), да и сельское население проживает достаточно компактно, концентри­руясь в местностях с наиболее бла­гоприятными для сельскохоз яй­ственной деятельности природ­ными условиями. Во многих же городах и в сельских районах ныне­шнее состояние окружающей среды можно наз вать экологичес­ким бедствием. И количество этих городов и сельских районо в все увеличивается. Так что факти­чески можно сказать, что мы нахо­димся на пороге близ кой глобаль­ной катастрофы. И она неминуемо наступит, если человечество не будет во всей своей деятельности отдавать приоритет вопросам эко­логии, умножать усилия по сохране­нию и восстановлению природной среды.

Однако в действительности мы пока еще далеки от осознания это­го. Прежде всего очевидно, что наши знания о причинах природных изменений окружающей среды, о свя ях, существующих между раз­личными природными процессами, далеко не полны. Но это не было бы еще так страшно, если бы про­белы и неполнота этих знаний отчетливо осознавались. В дей­ствительности, если судить по некоторым грандиозным проектам «преобразования природы», такое осо з нание редко бывает реально­стью. Иначе эти проекты подверга­лись бы более серьезным независи­мым экспертизам, гласным обсу­ждениям среди широкой обще­ственности.

Но и научное самомнение, когда считают, что наших наний по край­ней мере достаточно, не главная причина того, что в нашей стране многие проекты ока з ываются несо­стоятельными. У нас достаточно компетентных ученых, которые хорошо понимают современные возможности науки и могли бы дать (и давали!) правильную и беспри­страстную оценку таким проектам.

Главная причина — долгое время господствовавшая командно-администра тивная система (до сих пор все еще живая) с ее детищем — затратной экономикой, когда о работе предп­риятия или ведомства судят по тому, сколько средств и ресурсов з атрачено на работы.

Но не надо долго искать примеры таких проектов, которые нанесли существенный вред окружающей среде. Многие из них широко известны.

Кара Залив Каспий­ского моря, действовавший как естест енный испаритель и слу­живший источником сырья (мираби­лит) для химической промышлен­ности. Узкий пролив, соединяющий з алив с морем, перегорожен плоти­ной с целью приостановить паде­ние уровня Каспийского моря. Это дорогостоящее мероприятие могло компенсировать лишь 1—2 санти­метра падения уровня, тогда как в период 1929—1945 годов он пони­жался в среднем за год на 11,4 сан­тиметра, а в 1978—1987 годах еже­годно повышался в среднем на 12 сантиметров. На уровень Каспийс­кого моря это практически не повлияло, месторождение мираби­ лита деградировало, из-з а дей­ствия ветров земли вокруг сильно з асолились.

Аральское море.

Волга. Крупнейшая равнинная река европейской части России. Строительство многочисленных плотин с гидроэлектростанциями превращает ее в каскад слабопро­точных водохра илищ. Гидроэлект­ ростанции вносят сравнительно небольшой вклад в суммарное производство электроэнергии. В то же время залиты плодородные з емли (пашни и пойменные луга), погублены леса, затоплены насе­ленные пункты, нарушены пути миграций рыб ценных пород, умень­шилась способность вод к самоочи­щению, ускорилась эвтрофикация, обедняется флора и фауна, ухуд­шилось качество воды-

сожалению, аналогичные проекты принадлежат не только прошлому. Некоторые из них и сей­час про д олжают претворяться в жиз нь, например Ленинградская дамба. Дамба, предназначенная для защиты Ленинграда от навод­нений, уже теперь резко ухудшила водообмен между Финским з али­вом и Невской губой и способство­вала быстрому загрязнению воды в последней. Другие планируются на ближайшее будущее (высокогорное Рогунское водохранилище в Тад­жикистане, Катунская ГЭС на Алтае и т. п.)

Именно командно-администра­тивная система, стремившаяся любыми путями доказать свои пре­имущества даже там, где их на самом деле не было, стала причи­ной того, что наша страна из эколо­гически «благополучной» внезапно стала страной экологического бед­ствия. На самом деле деградация природной среды происходила все это время постоянно и с ускорени­ем. Первоначально тенденции к ухудшению качества природной среды маскировались большими размерами страны. Но с течением времени экстенсивное ра витие народного хозяйства с затратными методами, с одной стороны, и пре­словутым «валом» — с другой, при­вело к тому, что у нас стали преоб­ладать предприятия с отсталой технологией и оборудованием. Даже новые предприятия в стрем­лении сэкономить часто строились на базе старых технологи й, при­обретались за рубежом или монти­ровались без очистных сооружений и устройств. Традиционным стал о сокрытие и искажение информации о подлинном состоянии природной среды. Достаточно вспомнить Чер­нобыльскую катастрофу уже в эпоху объявленной гласности, когда сам факт и размеры трагеди и не были сразу доведены до широ­кой общественности (даже непо­средственно затронутой).

Да и сей­час еще раз личными организаци­ями делаются попытки скрыть или преуменьшить масштабы и серьез­ность последствий катастрофы Появление широкого экологичес­кого движения на Западе трактова­лось у нас как свидетельство поро­ков, присущих «загнивающему» капитализму. А его отсутствие у нас должно было говорить об эко­логическом благополучии в нашей стране. В результате было упущено драгоценное время, и если в разви­тых странах Запада в результате действенных мер в последние 10—20 лет экологическая обстановка по многим параметрам стала улуч­шаться, то в нашей стране, наобо­рот, происходило дальнейшее ухуд­шение природной среды.

Сейчас ситуация меняется. В печати, на радио, телевидении одной и главных тем стала эколо­гическая. Широкая общественность з нает теперь о критическом состо­янии окружающей среды и начи­нает активно действовать. При этом она может уже опираться не на одни только эмоции, но и на фак­тичес кие данные, в том числе в виде все большего числа различ­ ных карт экологической обстанов­ки. Создаются общественные эко­логические организации от локаль­ных в отдельных микрорайонах до всесоюз ных, таких, как ассоциация «Экология и мир» и др., в органы власти разных уровней избраны многие искренние сторонники решительных мер по з ащите окру­жающей среды. «Экологизация» законодательной и исполнитель­ной власти сейчас особенно важна, поскольку первоочередная задача — сделать экологически чистые произ водства выгодными и, наобо­рот, экономически невыгодным любое пренебрежение экологичес­кими нормами. Без этого призывы к рядовым гражданам беречь при­роду будут выглядеть демагогичес­кими и вряд ли достигнут цели. Вместе с тем необходима и самая широкая просветительская работа среди граждан всех возрастов.