Основы финансовой математики

1. Какая сумма была первоначально помещена в банк, если при закрытии счета вкладчик получил 17 тыс. д. ед. Движение денежных средств на счете было следующим:

1.04 — сумма Х, ставка простых процентов

25.04 — внесено дополнительно 13 тыс. д. ед.

8.08 — внесено дополнительно 2 тыс. д. ед.

9.09 — снято 5 тыс. д. ед.

30.10 — счет закрыт.

Расчет осуществляется английским способом.

Решение

Начисленные за весь срок проценты Наращенная сумма

I — проценты за весь срок ссуды

P — первоначальная сумма долга

S — наращенная сумма, то есть сумма в конце срока

i — ставка наращения процентов

n — срок ссуды

t — число дней ссуды

K — временная база начисления процентов (time basis)

K = 365

n (9.09 — 30.10) = 51/365 = 0.1397

P = 17 * (1 — 0.1397 * 0,08) = 16,81 тыс. д. ед.

n (8.08 — 9.09) = 31 / 365 = 0,0849

P = (16,81 + 5) * (1 — 0,0849 * 0,08) = 21,66 тыс. д. ед.

n (25.04 — 8.08) = 105 / 365 = 0,2877

P = (21,66 — 2) * (1 — 0,2877 * 0,08) = 19,21 тыс. д. ед.

n (01.04 — 25.04) = 24 / 365 = 0,0658

P = (19,21 — 13) * (1 — 0,0658 * 0,08) = 6,18 тыс. д. ед.

Ответ: Первоначально в банк было помещено 6,18 тыс. д. ед.

2. Пусть современная стоимость 1000 $, которые мистер, А должен получить по банковскому депозиту через два года при постоянной силе роста д, равна удвоенной современной стоимости 600 $, которые мистер В получит по депозиту через 4 года при той же д . Найти д

Решение:

S А (2) — сумма, которую получит мистер, А через 2 года

S В (4) — сумма, которую получит мистер В через 4 года

S А (0)=2 S В (0)

д — сила роста (интенсивность наращения) Через 2 года мистер, А должен получить 1000 $ при интенсивности роста д:

S А (2)= S А (0)

9 стр., 4182 слов

Изменение срока уплаты налога

... отношении всей подлежащей уплате суммы налога и (или) сбора либо ее части с начислением процентов на сумму задолженности. В соответствии с пунктом 3 статьи 61 НК РФ изменение срока уплаты налога и сбора осуществляется в форме отсрочки, рассрочки, ...

  • е д
  • 2 (1)

Через 4 года мистер В должен получить 600 $ при интенсивности роста д:

S В (4)= S В (0)

  • е д
  • 4 (2)

При этом S А (0)=2 S В (0) . Подставим числовые значения в (1) и (2) и выразим из них, например, S В (0):

1000= 2 S В (0)

  • е д
  • 2

S В (0)= 1000/(2

  • е д
  • 2 ) (3)

600= S В (0)

  • е д
  • 4

S В (0)= 600/(е д

  • 4 ) (4)

Приравняем (3) и (4) и выразим из полученного равенства д:

(1000/2)

  • е
  • 2 =600
  • е
  • 4

е

  • 2
  • е д
  • 4 = 600/500

е д

  • 2 =1,2

д =0,5 ln 1,2=0,091=9,1%

Ответ: Сила роста 9,1%

3. Предприниматель взял в банке кредит на сумму 200 тыс. руб. на условиях начисления сложных процентов по процентной ставке 25% годовых. Через 2 года он вернул банку 120 тыс. руб., но еще через год взял кредит в сумме 60 тыс. руб. Через 3 года после этого предприниматель вернул полностью полученные кредиты. Какую сумму при этом он выплатил банку?

Решение

S = P (1+ r ) n

P — первоначальная сумма долга

S — наращенная сумма, то есть сумма в конце срока

n — срок кредита

S 1 = 200 * (1 + 0,25)2 = 312,5 тыс. руб.

S 2 = (312,5 — 120) * 1,25 = 240,625 тыс. руб.

S 3 = (240,625 + 60) * 1,253 = 587,16 тыс. руб.

S = 120 + 587,16 = 707,16 тыс. руб.

Ответ: Предприниматель выплатил банку 707,16 тыс. руб.

4. Банком выдан кредит на 3 месяца под 27% годовых с ежемесячным начислением сложных процентов. Определить величину простой учетной ставки, обеспечивающей такую же величину начисленных процентов

Решение:

I = (1+ r / N ) n

I слож = (1 + 0,27/12)3 = 1,069

13 стр., 6479 слов

Виды биржевых сделок и их характеристика

... общественные отношения, которые возникают в связи с осуществлением биржевых сделок. Предметом данной работы выступают биржевые сделки, их виды, характеристика, а также нормы права, которые регламентируют порядок ... их осуществления. ГЛАВА 1. ОБЩИЕ ПОЛОЖЕНИЯ О БИРЖЕВЫХ СДЕЛКАХ, ИХ ОБЪЕКТАХ ...

I прост =0,069/3 * 12 = 0,276 = 27,6%

Ответ: Такую же величину начисленных процентов за 3 месяца обеспечит простая ставка 27,6% годовых.

учетный ставка финансовый актуарный

5. Ссуда в размере 3 000 000 руб. выдана банком 20 января на срок 1 год. На протяжении этого срока в счет погашения задолженности производятся платежи в банк: 20 апреля в размере 500 000 руб., 20 июля — 200 000 руб., 20 октября — 800 000 руб. На ссуду банк предусматривает начисление простых процентов по ставке 30% годовых. Рассчитать контур финансовой операции для актуарного метода и правила торговца и определить величину погасительного платежа в обоих случаях. Результаты сравнить

Решение:

Пусть ссуда выдана размером S 0 = 3 000 000 руб.

До окончания ссудной операции было сделано три частичных платежа:

A 1 = 500 000 руб. через 3 месяца (t 1 = ј) после начала сделки;

A 2 = 200 000 руб. через полгода (t 2 = Ѕ) после начала сделки;

A 3 = 800 000 рус. через 9 месяцев (t 3 = ѕ) после начала сделки.

Актуарный метод

Найдём последний (погашающий) платёж A 4 , сделанный в момент завершения операции (через год после начала сделки).

За время t 1 = ј года на сумму основного долга (которая равна размеру кредита) было начислено (30%

  • ј

— 3 000 000)/100% = 225 000 руб. процентных денег. Первый частичный платёж больше, чем эта сумма, поэтому он сначала идёт на погашение процентов (225 000 руб.), а затем — на погашение основного долга (275 000 руб.).

В результате после внесения первого частичного платежа размер задолженности заёмщика составил S 1 = 3 000 000 — 275 000 = 2 725 000. Начиная с момента времени t 1 = ј начисление процентов осуществляется уже на эту сумму.

С момента времени t 1 = ј по момент времени t 2 = Ѕ на сумму долга S 1 было начислено (30%

  • (Ѕ — ј)

— 2 725 000)/100% = 204 375 процентных денег. Второй частичный платёж (200 000) меньше, чем эта сумма, поэтому он полностью присоединяется к третьему частичному платежу. Величина задолженности остаётся той же: S 2 = S 1 .

С момента времени t 1 = ј по момент времени t 3 = ѕ на задолженность S 1 было начислено (30%

  • (ѕ — ј)

— 2 725 000)/100% = 408 750 руб. процентных денег. Второй и третий частичный платёж в сумме (200 000 + 800 000 = 1 000 000 руб.) превосходят эту величину, поэтому они идут на погашение процентов (408 750 руб.) и на уменьшение основного долга (1 000 000 — 408 750 = 591 250 руб.).

Значит, после внесения этих платежей размер задолженности заёмщика составит S 3 = 2 725 000 — 591 250 = 2 133 750 руб.)

Таким образом, за 3 месяца (ј года) до окончания срока ссуды заёмщик должен вернуть кредитору лишь 2 133 750 руб. За оставшееся время на эту сумму будет начислено (30%

  • ј
  • 2 133 750)/100% = 160 031,25 процентных денег.

Следовательно, искомый заключительный платёж составляет A 4 = 2 133 750 + 160 031,25 = 2 293 781,25 руб.

Всего заёмщиком было выплачено 500 000 + 200 000 + 800 000 + 2 293 781,25= 3 793 781,25 руб.

Принцип правила торговца

На сумму основного долга S 0 = 3 000 000 руб. в течение всего срока ссуды (итоговая задолженность составляет 3 000 000 + (30%

  • 1
  • 3 000 000)/100%)=3 900 000.

На первый частичный платёж A 1 = 500 000 руб., сделанный в момент времени t 1 = ј, в течение девяти месяцев (сумма платежа с начисленными процентами составляет 500 000 + (30%

  • ѕ
  • 500 000)/100% = 612 500 руб.

На второй частичный платёж A 2 = 200 000, сделанный в момент времени t 2 = Ѕ, в течение полугода (сумма платежа с начисленными процентами составляет 200 000 + (30%

  • Ѕ
  • 200 000)/100% = 230 000 руб.

На третий частичный платёж A 3 = 800 000 руб., сделанный в момент времени t 3 = ѕ, в течение трёх месяцев (сумма платежа с начисленными процентами составляет 800 000 + (30%

  • ј
  • 800 000)/100% = 860 000 руб.

Сумма всех частичных платежей с начисленными на них процентами равна 612 500 + 230 000 + 860 000 = 1 702 500 руб. Последний (погашающий) платёж A 4 равен разности между величиной итоговой задолженности (3 900 000 руб.) и этой суммой и составляет 3 900 000 — 1 702 500 = 2 197 500 руб.

Отметим, что всего за год заёмщик вернул кредитору 500 000 + 200 000 + 800 000 + 2 197 500 = 3 697 500, что на 202 500 руб. меньше, чем если бы он возвращал долг одним платежом в конце года.

При рассмотрении двух методов, видно, что метод правила торговца выгоднее, чем актуарный метод.

6. Принято решение о выкупе облигаций государственного бессрочного займа, по которому на каждую облигацию выплачивались доходы в размере 2 тыс. руб. дважды в год — в конце каждого полугодия, а доходность облигации составляла 5% годовых. Определить сумму, подлежащую выплате на каждую облигацию

Решение:

S год = 2/6 *1 2 = 4 тыс. руб [14, «https:// «].

Р = 4/0,05 = 80 тыс. руб.

Ответ: По каждой облигации подлежит выплате сумма 80 тыс. руб.

7. Ссуда в размере 200 тыс. руб. выдана на 3 года под 11% годовых и должна быть погашена разовым платежом в конце третьего года. Для погашения задолженности должник должен создать погасительный фонд, размещая денежные средства в банке под 11.5% годовых. В течение первого года он вносил в банк по 5 тыс. руб. в конце каждого месяца, на протяжении второго годапо 15 тыс. руб. в конце каждого квартала. Какую сумму ему нужно внести в банк через 2.5 года, чтобы суммы погасительного фонда было достаточно для погашения долга. В расчетах используются сложные ставки процентов

Решение

Сумма, необходимая для погашения кредита:

S = 200 * (1 + 0,11)3 = 273,53 тыс. руб.

Формирование погасительного фонда

Период

1 год

платежи

накопленные средства

5,048

10,144

15,289

20,484

25,728

31,022

36,368

41,764

47,212

52,713

58,266

месячная процентная ставка

0,958

период

2 год

платежи

накопленные средства

63,872

64,484

65,102

80,870

81,645

82,427

98,361

99,303

100,255

116,359

117,474

118,60

период

3 год

платежи

накопленные средства

134,880

136,173

137,478

138,795

140,125

141,468

273.53 / (1+0.0095) 6 = 258.316 тыс. руб.

258,315 — 141,468 = 116,847 тыс. руб.

Ответ: Для того, чтобы погасить кредит через 2,5 года необходимо внести 116,847 тыс. руб.

8. На вклад в течение 15 месяцев начисляются проценты: а) по схеме сложных процентов; б) по смешанной схеме. Какова должна быть процентная ставка, при которой происходит реальное наращение капитала, если каждый квартал цены увеличиваются на 8%?

Решение

а) (1+ r )15 / (1 + 0,08)5 = 1

(1+ r )15 = 1,469

r = 0.026

0,026 * 12 = 0,312 = 31,2%

Ответ.

б) 1 + 1,4* r = 1,469

r = 0,335 = 33.5%

Ответ:

а) Процентная ставка должна быть более 31,2% годовых.

б) Процентная ставка должна быть более 33.5% годовых.

9. Найти годовую ренту-сумму (консолидированную) сроком в 10 лет для двух годовых рент: одна — длительностью 5 лет с годовым платежом 1000 тыс. руб., другая — 8 лет и 800 тыс. руб. Годовая ставка — 8%

Решение

PV=R*(1 — (1+r) — n)/r

PV 1 = 1000 * (1 — (1 + 0,08)-5 ) / 0,08 = 3993 тыс. руб.

PV 2 = 800 * (1 — (1 + 0,08)-8 ) / 0,08 = 4598 тыс. руб.

Современная сумма ренты = 3993 + 4598 = 8591 тыс. руб.

8591 = R * (1 — (1 + 0,08)-5 ) / 0,08

R = 1280,328 тыс. руб.

Ответ: Годовой платеж консолидированной ренты равен 1280,328 тыс. руб.

Список использованных источников

учетный ставка финансовый актуарный

С. Е. Кудрявцев, Г. П. Начала, Т. В. Математика

4. Кочович Е. Финансовая математика. Теория и практика финансово-банковских расчетов. — М.: Финансы и статистика, 1994.

Г. А. Начальный, Я. С. Теоретическое, Мелкумов Я. С., Е. М. Методы, Е. М. Финансовая, Ширшов У. В.