Математика в науке и практической деятельности

«Математика в науке и

практической деятельности»

Работу выполнила:, Мухаметзянова Элиза

010 группа

2016год

Название «математика» происходит от греческого слова «матейн» (mathein) — учиться, познавать. Древние греки вообще считали, что понятия «математика» (mathematike) и «наука», «познание» (mathema) — синонимы. Им было свойственно такое понимание универсализма этой отрасли знания, которое два тысячелетия спустя выразил Рене Декарт, писавший: «К области математики относят науки, в которых рассматриваются либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звезды, звуки или что-нибудь другое…; таким образом, должна существовать некая общая наука, объясняющая все, относящееся к порядку и мере, не входя в исследование никаких частных предметов.. .»

Роль математики в современной науке постоянно возрастает. Это связано с тем, что, во-первых, без математического описания целого ряда явлений действительности трудно надеяться на их более глубокое понимание и освоение, а, во-вторых, развитие физики, лингвистики, технических и некоторых других наук предполагает широкое использование математического аппарата. Более того, без разработки и использования последнего было бы, например, невозможно ни освоение космоса, ни создание электронно-вычислительных машин, нашедших применение в самых различных областях человеческой деятельности.

В нашей повседневной жизни мы настолько привыкли к математике, что даже не замечаем, что пользуемся ею постоянно. А ведь до сих пор ученики задают вопрос “А зачем нам нужна математика? Только в магазин сходить?”. Так для чего же мы изучаем дроби, площадь, периметр, объем? Для чего нужны геометрические сведения? Где каждому человеку математика необходима в повседневной жизни? А что будет, если математику совсем не знать? Необходимо рассмотреть все виды своей деятельности и доказать, что без математики не обойтись в быту.

2.Математика и режим дня

Например, наш распорядок дня – режим, не что иное как определение времени и его планирование в течение дня при помощи несложных математических вычислений.

Уроки в школе – это тоже распределение времени между изучением разных предметов и отдыхом на переменах.

После школы нам нужно успеть пообедать, сходить на дополнительные занятия (например, я хожу в художественную школу и занимаюсь карате), сделать уроки, поужинать, отдохнуть и лечь спать, чтобы хорошенько выспаться и с новыми силами и в хорошем настроении начать новый день.

13 стр., 6347 слов

Моделирование деятельности ОАО «Новосибстальконструкция»

... данной работе были поставлены следующие задачи: изучение теоретических аспектов финансового моделирования; изучение и обобщение методического инструментария моделирования финансово-хозяйственной деятельности; моделирование финансового состояния предприятия и его деятельности при разработке финансовой стратегии. Объект исследования - финансовое моделирование. В ...

И вот так мы весь день следим за временем по часам и учимся правильно его распределять, чтобы не опаздывать и не прибегать раньше, чем нужно.

Семейный бюджет

Моя бабушка до сих пор ведет тетрадку, в которой планирует семейный бюджет. Она говорит, что так ее научила делать мама, а если просто тратить деньги, то их может не хватить на какие-нибудь большие покупки или, например, на отпуск.

В этой тетрадке бабушка сделала таблицу. В одной графе – прибыль, т.е. сколько денег приходит в семейный бюджет. В другой графе – расходы, т.е. сколько денег можно потратить.

В начале каждого месяца, бабушка садится, открывает тетрадь и рассчитывает как будут потрачены деньги.

Покупка продуктов

В магазине нам постоянно приходится производить математические расчеты. Например, нам нужно пойти в магазин и купить продуты по списку.

Дома нам придется рассчитать сколько денег нужно взять с собой чтобы чувствовать себя спокойно. Чтобы в магазине не пришлось переживать хватит ли нам денег и не придется ли что-то оставить, а потом приходить еще раз.

Приобретение одежды

Нет ничего приятнее, чем покупка красивых новых вещей! Вот приходим мы в магазин, видим красивую кофточку, радостно хватаем ее…

Но тут подходит продавщица и интересуется какой размер нам нужен и этот вопрос приводит нас в замешательство. Мы, конечно, можем попросить ее подобрать нам одежду по размеру. Но не будешь, же с каждой вещью бегать к продавцу.

Тут нам снова приходиться обратиться к математике и вспомнить свой рост – он нам нужен для того, что вещь не оказалась очень длинной или же короткой.

3.МАТЕМАТИКА В СИСТЕМЕ ЗНАНИЙ

За время своего существования человечество прошло огромный путь от незнания к знанию и от неполного знания к более полному и совершенному. Несмотря на то, что этот путь привел к открытию многих законов природы и к построению захватывающе интересной картины мира, каждый день приносит новые открытия, новое проникновение в недостаточно изученные, а порой и полностью неизвестные тайны природы. Но для того, чтобы продвинуться в область неизведанного как можно дальше и поставить на службу обществу новые силы природы, наука должна смело врываться в те области знания, которыми человечество интересовалось еще недостаточно серьезно или которые из-за сложности господствующих там явлений казались недоступными нашему познанию.

На глазах нашего поколения наука сделала колоссальный шаг в изучении законов природы и в использовании полученных знаний. Достаточно сказать о поразивших воображение успехах в покорении космоса и исследованиях внутриатомных явлений, а также о первых операциях на сердце. То, что было так недавно еще неизвестным, за пределами представлений людей и тем более вне их практической деятельности, теперь стало привычным и вошло в нашу жизнь. Успехи медицины позволили вернуть к активной жизни многих, казалось бы, безнадежно больных людей, для которых была потеряна радость восприятия красоты окружающего мира.

Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени.

4 стр., 1519 слов

Понятие и происхождение кредитной природы современных неполноценных ...

... недостатках кредитно-денежной политики. Как видим, назвать единственную причину циклического хода движения рыночной экономики оказывается весьма трудным делом. Поэтому многие современные экономисты ... заложена в сложном и противоречивом характере многообразных сил и факторов. Современное государство располагает целым набором экономических инструментов, способных сдержать «перегрев» экономики ...

За тысячелетия своего существования математика прошла большой и сложный путь, на протяжении которого неоднократно изменялся еехарактер, содержание и стиль изложения. От первичных представлений об отрезке прямой как кратчайшем расстоянии между двумя точками, от предметных представлений о целых числах в пределах первого десятка математика пришла к образованию многих новых понятий и сильных методов, превративших ее в мощное средство исследования природы и гибкое орудие практики. От примитивного счета посредством камешков, палочек и зарубок на стволе дерева математика развилась в обширную стройную научную дисциплину с собственным предметом исследования и специфическими глубокими методами. Она выработала собственный язык, очень экономный и точный, который оказался исключительно эффективным не только внутри математики, но и в многочисленных областях ее применений.

Как ни велики успехи научного познания, мы замечаем множество проблем, еще недостаточно исследованных и требующих дополнительных усилий, порой очень значительных. Назовем процессы мышления, причины развития психических заболеваний, управление познавательной деятельностью. В то же время мы все отдаем себе отчет в том, как важно возможно быстрее продвинуть вперед наше понимание этих явлений. Действительно, если бы нам были известны достаточно точно процессы мышления, то это позволило бы облегчить и ускорить обучение детей и взрослых, приобрести новые возможности в лечении психических заболеваний. Но эти задачи настолько сложны, что чисто экспериментальными путями их разрешить нет никаких надежд. Необходимо привлечь совсем иные возможности познания, в частности путь математического моделирования этих процессов и последующего получения логических следствий, уже доступных непосредственному наблюдению. Этот прием оправдал себя во многих областях знания — в астрономии, физике, химии и пр.

4.СОВРЕМЕННАЯ МАТЕМАТИКА И СТИЛЬ НАУЧНОГО МЫШЛЕНИЯ

Рассмотрение вопроса влияния математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений представляет несомненный интерес хотя бы потому, что оно позволяет глубже проникнуть в перемены, происшедшие в современном научном мышлении, понять их причины, а так же не избежность этого явления.

Познание предмета не осуществляется вдруг, а проходит ряд последовательных ступеней. Сначала человек наблюдает за явлением и подмечает некоторые его особенности. Затем, с целью уточнения полученных сведений, наступает пора проведения эксперимента, т. е. наблюдений за интересующим нас явлением в достаточно строго соблюдаемых условиях. Одновременно происходят попытки объяснения подмеченных фактов на базе имеющихся общих представлений. Создаются основы теории этого явления. Из этой теории выводятся следствия. По совпадению полученных следствий с ходом явления судят о соответствии теории истинному положению дел.

7 стр., 3209 слов

Три кризиса оснований математики

... оно ни было велико, само по себе не является ... Третий кризис оснований математики Едва улеглись страсти после второго кризиса оснований, как в конце XIX... М. 490 Далее, логицизм питается тем, ... прежде всего в том, что их пос... Лобачевского представил ученому совету физико-математического факульте... Философия математики в начале XIX в 3.2 . Эту идею о разном статусе ...

Человечество очень давно подметило действие рычага и пользовалось им с незапамятных времен. Однако лишь количественная его теория позволила делать предварительные расчеты и пред вычислять те силы, которые необходимо приложить, чтобы получить необходимый эффект. Но этот шаг в развитии наших знаний был сделан на весьма высокой стадии прогресса научной мысли.

Однако привлечение математических методов в науку неизбежно влечет за собой и необходимость привлечения самого стиля математического мышления: четкую формулировку исходных положений, полноту проводимой классификации, строгость логических заключений. Об этих моментах и пойдет теперь речь.

В математике всегда перечисляется та совокупность исходных положений, в которых решается задача. Поэтому и полученный результат, вообще говоря, верен только тогда, когда эти исходные положения выполнены. Возьмем для иллюстрации этого утверждения хорошо известную каждому из нас еще с детства теорему Пифагора о соотношении между длиной гипотенузы и длинами катетов. Эта теорема верна для всех прямоугольных треугольников евклидовой плоскости. Если же рассматривать прямоугольные треугольники на какой-либо другой поверхности, например на сфере, то теорема Пифагора, вообще говоря, будет неверна. Именно поэтому в математике требуется перечисление всех условий, в которых верен результат, и не допускается присоединение понадобившихся в процессе рассуждений дополнительных предположений. Такая скрупулезная точность в перечислении условий теорем и во всем изложении, берущая свое начало в математике еще со времен эллинизма, долгое время была присуща только ей. В других научных дисциплинах, а также в практической деятельности к этой отточенной строгости относились в лучшем случае безразлично.

Эта простая мысль — рассматривать хорошо определенные понятия и относительно них делать заключения, базирующиеся на определенных исходных положениях, аксиомах — в наши дни широко входит в обиход науки и практической деятельности. Такой подход, примененный к правилам грамматики, показал, что они не обладают полнотой определения. Положение спасает привычка повседневного разговорного языка, в результате чего некоторый дефект определений не играет серьезной роли при употреблении родного языка. Однако любая попытка передать автомату конструирование фраз по определенным правилам грамматики или же перевод с одного языка на другой неизбежно приводит к ошибкам, к многочисленным возможностям неправильных оборотов речи. А такого рода общений человека с машиной в наши дни много, и у нас должна быть уверенность в том, что машины правильно воспримут указания и сделают именно то, что им задано.

В связи с первыми шагами человечества в завоевании космоса становится актуальной проблема общения человечества с другими цивилизациями, с которыми возможно придется встретиться во время космических полетов. При этом неизбежно возникнет задача общения. Ясно, что французского, английского или русского языка для этого недостаточно. Пока проблемами этого рода занимаются в первую очередь писатели-фантасты. Они предлагают решение, которое может и не осуществиться в действительности: представители других цивилизаций находятся на столь высокой ступени интеллектуального развития, что уже обладают совершенными автоматами-переводчиками, которые автоматически настраиваются на язык прибывшего к ним космонавта и ведут с ним беседу на его родном языке. Однако об этой проблеме размышляют и ученые. Они исходят из другого предположения. Если нам придется встретиться с представителями внеземных цивилизаций, то они будут владеть элементами формальной логики и обладать основами геометрических представлений. Поскольку законы мира едины, то и законы логики и первичные геометрические понятия землян и представителей внеземной цивилизации будут одинаковы.

2 стр., 829 слов

Язык в профессиональной деятельности экономиста

... узких профессиональных «языков» происходит определенное их взаимодействие, например, экономического языка специалистов по автоматизированным информационным технологиям в экономике с языками разных инженерно- ... другим основаниям. В науке, соответственно, столько же профессиональных языков. Хотя ученые пользуются в своей профессиональной деятельности естественным (разговорным) языком, но для ...

Однако необходимость математического подхода к строгости и точности определений и логических рассуждений нужна не только для подобных, пока весьма отдаленных перспектив, но и для дел, независимо от того, касаются ли они лингвистики, юриспруденции, инженерного дела или экономики. В течение ряда лет я был довольно тесно связан с врачами, занимаясь совместными исследованиями по объективизации диагностики сердечных заболеваний. Меня поразило наличие почти что математического стиля мышления в основном коллективе врачей — сотрудников института сердечных заболеваний. Анализ состояния каждого больного проводился с поразительной логической скрупулезностью, свойственной до последнего времени лишь математическим исследованиям.

Вторая сторона математизации мышления состоит в том стремлении, которое теперь наблюдается, — выводить из строго сформулированных начальных положений логические следствия и затем эти следствия подвергать непосредственному наблюдению. При этом особую ценность приобретают те теоретические построения, которые позволяют привлечь к получению логических заключений разнообразный аппарат дедуктивной математики. При этом удается воспользоваться огромным объемом уже полученных математикой выводов. Этим пользуются в математике уже давно.

5.Заключение.

При изучении математики осуществляется развитие интеллекта школьника, обогащение его методами отбора и анализа информации. Преподавание любого раздела математики благотворно сказывается на умственном развитии учащихся, поскольку прививает им навыки ясного логического мышления, оперирующего четко определенными понятиями.

Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы — логика и интуиция, анализ и конструкция, общность и конкретность.

Изучение математики также способствует формированию гражданских качеств личности посредством воспитания свойства, которое мы называем интеллектуальной честностью, благотворно сказывается на умственном, нравственном и эстетическом развитии учащихся.